## The Annals of Applied Probability

- Ann. Appl. Probab.
- Volume 5, Number 1 (1995), 44-48.

### On Rates of Convergence for Common Subsequences and First Passage Time

#### Abstract

We give a unified simple proof of recent results of Alexander concerning the rate of convergence of the mean length of the longest common subsequence of two random sequences and the rate of convergence of the expected value of certain passage times in percolation theory.

#### Article information

**Source**

Ann. Appl. Probab., Volume 5, Number 1 (1995), 44-48.

**Dates**

First available in Project Euclid: 19 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aoap/1177004827

**Digital Object Identifier**

doi:10.1214/aoap/1177004827

**Mathematical Reviews number (MathSciNet)**

MR1325040

**Zentralblatt MATH identifier**

0822.60007

**JSTOR**

links.jstor.org

**Subjects**

Primary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Secondary: 60G17: Sample path properties

**Keywords**

Rate of convengence Azuma's inequality common subsequence passage time

#### Citation

Rhee, WanSoo T. On Rates of Convergence for Common Subsequences and First Passage Time. Ann. Appl. Probab. 5 (1995), no. 1, 44--48. doi:10.1214/aoap/1177004827. https://projecteuclid.org/euclid.aoap/1177004827