The Annals of Applied Probability

Error estimates for binomial approximations of game options

Yuri Kifer

Full-text: Open access

Abstract

We justify and give error estimates for binomial approximations of game (Israeli) options in the Black–Scholes market with Lipschitz continuous path dependent payoffs which are new also for usual American style options. We show also that rational (optimal) exercise times and hedging self-financing portfolios of binomial approximations yield for game options in the Black–Scholes market “nearly” rational exercise times and “nearly” hedging self-financing portfolios with small average shortfalls and initial capitals close to fair prices of the options. The estimates rely on strong invariance principle type approximations via the Skorokhod embedding.

Article information

Source
Ann. Appl. Probab., Volume 16, Number 2 (2006), 984-1033.

Dates
First available in Project Euclid: 29 June 2006

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1151592257

Digital Object Identifier
doi:10.1214/105051606000000088

Mathematical Reviews number (MathSciNet)
MR2244439

Zentralblatt MATH identifier
1142.91533

Subjects
Primary: 91B28
Secondary: 60F15: Strong theorems 91A05: 2-person games

Keywords
Game options Dynkin games complete markets binomial approximation Skorokhod embedding

Citation

Kifer, Yuri. Error estimates for binomial approximations of game options. Ann. Appl. Probab. 16 (2006), no. 2, 984--1033. doi:10.1214/105051606000000088. https://projecteuclid.org/euclid.aoap/1151592257


Export citation

References

  • Amin, K. and Khanna, A. (1994). Convergence of American option values from discrete-to continuous-time financial models. Math. Finance \bf4 289–304.
  • Baurdoux, E. J. and Kyprianou, A. E. (2004). Further calculations for Israeli options. Stochastics Stochastics Rep. \bf76 549–569.
  • Berkes, I. and Philipp, W. (1979). Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. \bf7 29–54.
  • Billingsley, P. (1986). Probability and Measure, 2nd ed. Willey, New York.
  • Cvitanic, J. and Ma, J. (2001). Reflected forward–backward SDEs and obstacle problems with boundary conditions. J. Appl. Math. Stochastic Anal. \bf14 113–138.
  • Cox, J. C., Ross, R. A. and Rubinstein, M. (1976). Option pricing: A simplified approach. J. Financ. Econom. \bf7 229–263.
  • Ekström, E. (2006). Properties of game options. Math. Methods Oper. Res. 63. To appear.
  • Gapeev, P. V. and Kühn, C. (2005). Perpetual convertible bonds in jump–diffusion models. Statist. Decisions \bf23 15–31.
  • Hamadene, S. (2002). Mixed zero–sum differential game, Dynkin games, and American game options. Preprint.
  • Hubalek, F. and Schachermayer, W. (1998). When does convergence of asset price processes imply convergence of option prices. Math. Finance \bf8 385–403.
  • Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland, Amsterdam.
  • Kallsen, J. and Kühn, C. (2004). Pricing derivatives of American and game type in incomplete markets. Finance Stoch. \bf8 261–284.
  • Karatzas, I. and Shreve, S. (1988). Brownian Motion and Stochastic Calculus. Springer, New York.
  • Kiefer, J. (1969). On the deviations in the Skorokhod–Strassen approximation scheme. Z. Wahrsch. Verw. Gebiete \bf13 321–332.
  • Kifer, Yu. (2000). Game options. Finance Stoch. \bf4 443–463.
  • Komlós, J., Major, P. and Tusnády, G. (1976). An approximation of partial sums of independent RV's and the sample DF. II. Z. Wahrsch. Verw. Gebiete \bf34 33–56.
  • Kühn, C. and Kyprianou, A. E. (2003). Collable puts as composite exotic options. Preprint.
  • Kühn, C. and Kyprianou, A. E. (2003). Pricing Israeli options: A pathwise approach. Preprint.
  • Kyprianou, A. E. (2004). Some calculations for Israeli options. Finance Stoch. \bf8 73–86.
  • Kunita, H. and Seko, S. (2004). Game call options and their exercise regions. Preprint.
  • Lamberton, D. (1998). Error estimates for the binomial approximation of American put options. Ann. Appl. Probab. \bf8 206–233.
  • Lamberton, D. (2002). Brownian optimal stopping and random walks. Appl. Math. Optim. \bf45 283–324.
  • Lepeltier, J. P. and Maingueneau, J. P. (1984). Le jeu de Dynkin en theorie generale sans l'hypothese de Mokobodski. Stochastics \bf13 24–44.
  • Lamberton, D. and Rogers, L. C. G. (2000). Optimal stopping and embedding. J. Appl. Probab. \bf37 1143–1148.
  • Mulinacci, S. (2003). American path-dependent options: Analysis and approximations. Rend. Studi Econ. Quant. \bf2002 93–120.
  • Neveu, J. (1975). Discrete-Parameter Martingales. North-Holland, Amsterdam.
  • Rogers, L. C. G. and Stapleton, E. J. (1998). Fast accurate binomial pricing. Finance Stoch. \bf2 3–17.
  • Shiryaev, A. N. (1999). Essentials of Stochastic Finance. World Scientific Publishing, River Edge, NJ.
  • Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Springer, Berlin.
  • Walsh, J. B. (2003). The rate of convergence of the binomial tree scheme. Finance Stoch. \bf7 337–361.
  • Zaitsev, A. Yu. (2001). Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. I–III. Theory Probab. Appl. \bf45 624–641; 46 (2002) 490–514, 676–698.