The Annals of Applied Probability
- Ann. Appl. Probab.
- Volume 15, Number 3 (2005), 2172-2202.
A regression-based Monte Carlo method to solve backward stochastic differential equations
Emmanuel Gobet, Jean-Philippe Lemor, and Xavier Warin
Full-text: Open access
Abstract
We are concerned with the numerical resolution of backward stochastic differential equations. We propose a new numerical scheme based on iterative regressions on function bases, which coefficients are evaluated using Monte Carlo simulations. A full convergence analysis is derived. Numerical experiments about finance are included, in particular, concerning option pricing with differential interest rates.
Article information
Source
Ann. Appl. Probab., Volume 15, Number 3 (2005), 2172-2202.
Dates
First available in Project Euclid: 15 July 2005
Permanent link to this document
https://projecteuclid.org/euclid.aoap/1121433781
Digital Object Identifier
doi:10.1214/105051605000000412
Mathematical Reviews number (MathSciNet)
MR2152657
Zentralblatt MATH identifier
1083.60047
Subjects
Primary: 60H10: Stochastic ordinary differential equations [See also 34F05] 60H10: Stochastic ordinary differential equations [See also 34F05] 65C30: Stochastic differential and integral equations
Keywords
Backward stochastic differential equations regression on function bases Monte Carlo methods
Citation
Gobet, Emmanuel; Lemor, Jean-Philippe; Warin, Xavier. A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15 (2005), no. 3, 2172--2202. doi:10.1214/105051605000000412. https://projecteuclid.org/euclid.aoap/1121433781
References
- Andersen, L. and Brotherton-Ratcliffe, R. (1996). Exact exotics. Risk 9 85–89.
- Bally, V. (1997). Approximation scheme for solutions of BSDE. In Backward Stochastic Differential Equations (Paris, 1995–1996) (N. El Karoui and L. Mazliak, eds.). Pitman Res. Notes Math. Ser. 364 177–191. Longman, Harlow.
- Bally, V. and Pagès, G. (2003). Error analysis of the optimal quantization algorithm for obstacle problems. Stochastic Process. Appl. 106 1–40.
- Bergman, Y. Z. (1995). Option pricing with differential interest rates. Rev. Financial Studies 8 475–500.
- Bouchaud, J. P., Potters, M. and Sestovic, D. (2001). Hedged Monte Carlo: Low variance derivative pricing with objective probabilities. Physica A 289 517–525.Mathematical Reviews (MathSciNet): MR1805291
Digital Object Identifier: doi:10.1016/S0378-4371(00)00554-9
Zentralblatt MATH: 0971.91503 - Bouchard, B. and Touzi, N. (2004). Discrete time approximation and Monte Carlo simulation of backward stochastic differential equations. Stochastic Process. Appl. 111 175–206.Mathematical Reviews (MathSciNet): MR2056536
Digital Object Identifier: doi:10.1016/j.spa.2004.01.001
Zentralblatt MATH: 1071.60059 - Briand, P., Delyon, B. and Mémin, J. (2001). Donsker-type theorem for BSDEs. Electron. Comm. Probab. 6 1–14.
- Chevance, D. (1997). Numerical methods for backward stochastic differential equations. In Numerical Methods in Finance (L. C. G. Rogers and D. Talay, eds.) 232–244. Cambridge Univ. Press.
- Clément, E., Lamberton, D. and Protter, P. (2002). An analysis of a least squares regression method for American option pricing. Finance Stoch. 6 449–471.Mathematical Reviews (MathSciNet): MR1932380
Digital Object Identifier: doi:10.1007/s007800200071
Zentralblatt MATH: 1039.91020 - Cvitanic, J. and Ma, J. (1996). Hedging options for a large investor and forward–backward SDE's. Ann. Appl. Probab. 6 370–398.Mathematical Reviews (MathSciNet): MR1398050
Digital Object Identifier: doi:10.1214/aoap/1034968136
Project Euclid: euclid.aoap/1034968136
Zentralblatt MATH: 0856.90011 - Duffie, D. and Epstein, L. (1992). Stochastic differential utility. Econometrica 60 353–394.
- El Karoui, N., Peng, S. G. and Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7 1–71.Mathematical Reviews (MathSciNet): MR1434407
Digital Object Identifier: doi:10.1111/1467-9965.00022
Zentralblatt MATH: 0884.90035 - El Karoui, N. and Quenez, M. C. (1995). Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33 29–66.Mathematical Reviews (MathSciNet): MR1311659
Digital Object Identifier: doi:10.1137/S0363012992232579
Zentralblatt MATH: 0831.90010 - Föllmer, H. and Schweizer, M. (1990). Hedging of contingent claims under incomplete information. In Applied Stochastic Analysis (M. H. A. Davis and R. J. Elliot, eds.) 389–414. Gordon and Breach, London.
- Gobet, E., Lemor, J. P. and Warin, X. (2004). A regression-based Monte Carlo method to solve backward stochastic differential equations. Technical Report 533-CMAP, Ecole Polytechnique, France.Mathematical Reviews (MathSciNet): MR2152657
Digital Object Identifier: doi:10.1214/105051605000000412
Project Euclid: euclid.aoap/1121433781
Zentralblatt MATH: 1083.60047 - Golub, G. and Van Loan, C. F. (1996). Matrix Computations, 3rd ed. Johns Hopkins Univ. Press.
- Graf, S. and Luschgy, H. (2000). Foundations of Quantization for Probability Distributions. Lecture Notes in Math. 1730. Springer, Berlin.
- Lapeyre, B. and Temam, E. (2001). Competitive Monte Carlo methods for the pricing of Asian options. Journal of Computational Finance 5 39–59.
- Lemor, J. P. (2005). Ph.D. thesis, Ecole Polytechnique.
- Longstaff, F. and Schwartz, E. S. (2001). Valuing American options by simulation: A simple least squares approach. The Review of Financial Studies 14 113–147.
- Ma, J., Protter, P., San Martín, J. and Soledad, S. (2002). Numerical method for backward stochastic differential equations. Ann. Appl. Probab. 12 302–316.Mathematical Reviews (MathSciNet): MR1890066
Digital Object Identifier: doi:10.1214/aoap/1015961165
Project Euclid: euclid.aoap/1015961165
Zentralblatt MATH: 1017.60074 - Ma, J., Protter, P. and Yong, J. M. (1994). Solving forward–backward stochastic differential equations explicitly–-A four step scheme. Probab. Theory Related Fields 98 339–359.Mathematical Reviews (MathSciNet): MR1262970
Digital Object Identifier: doi:10.1007/BF01192258
Zentralblatt MATH: 0794.60056 - Ma, J. and Zhang, J. (2002). Path regularity for solutions of backward stochastic differential equations. Probab. Theory Related Fields 122 163–190.Mathematical Reviews (MathSciNet): MR1894066
Digital Object Identifier: doi:10.1007/s004400100144
Zentralblatt MATH: 1014.60060 - Newton, N. J. (1994). Variance reduction for simulated diffusions. SIAM J. Appl. Math. 54 1780–1805.Mathematical Reviews (MathSciNet): MR1301282
Digital Object Identifier: doi:10.1137/S0036139992236220
Zentralblatt MATH: 0811.60046 - Pardoux, E. (1998). Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. In Stochastic Analysis and Related Topics (L. Decreusefond, J. Gjerde, B. Oksendal and A. S. Ustüunel, eds.) 79–127. Birkhäuser, Boston.
- Pardoux, E. and Peng, S. G. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55–61.
- Peng, S. (2003). Dynamically consistent evaluations and expectations. Technical report, Institute Mathematics, Shandong Univ.
- Peng, S. (2004). Nonlinear expectations, nonlinear evaluations and risk measures. Stochastic Methods in Finance. Lecture Notes in Math. 1856 165–253. Springer, New York.
- Zhang, J. (2004). A numerical scheme for BSDEs. Ann. Appl. Probab. 14 459–488.Mathematical Reviews (MathSciNet): MR2023027
Digital Object Identifier: doi:10.1214/aoap/1075828058
Project Euclid: euclid.aoap/1075828058
Zentralblatt MATH: 1056.60067

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations
Lemor, Jean-Philippe, Gobet, Emmanuel, and Warin, Xavier, Bernoulli, 2006 - Discrete time approximation of fully nonlinear HJB equations via BSDEs with nonpositive jumps
Kharroubi, Idris, Langrené, Nicolas, and Pham, Huyên, The Annals of Applied Probability, 2015 - A quantization algorithm for solving multidimensional
discrete-time optimal stopping problems
Bally, Vlad and Pagès, Gilles, Bernoulli, 2003
- Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations
Lemor, Jean-Philippe, Gobet, Emmanuel, and Warin, Xavier, Bernoulli, 2006 - Discrete time approximation of fully nonlinear HJB equations via BSDEs with nonpositive jumps
Kharroubi, Idris, Langrené, Nicolas, and Pham, Huyên, The Annals of Applied Probability, 2015 - A quantization algorithm for solving multidimensional
discrete-time optimal stopping problems
Bally, Vlad and Pagès, Gilles, Bernoulli, 2003 - Unbiased simulation of stochastic differential equations using parametrix expansions
Andersson, Patrik and Kohatsu-Higa, Arturo, Bernoulli, 2017 - Representation theorems for backward stochastic differential equations
Ma, Jin and Zhang, Jianfeng, The Annals of Applied Probability, 2002 - Estimation of the Option Prime: Microsimulation of Backward Stochastic Differential Equations
Allende, Héctor and Elías, Carlos, International Statistical Review, 2004 - A Robust Weak Taylor Approximation Scheme for Solutions of Jump-Diffusion Stochastic Delay Differential Equations
Zhou, Yanli, Wu, Yonghong, Ge, Xiangyu, and Wiwatanapataphee, B., Abstract and Applied Analysis, 2012 - Number of paths versus number of basis functions in American option pricing
Glasserman, Paul and Yu, Bin, The Annals of Applied Probability, 2004 - Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations
Hutzenthaler, Martin, Jentzen, Arnulf, and Kloeden, Peter E., The Annals of Applied Probability, 2013 - One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times
Martinez, Miguel and Talay, Denis, Electronic Journal of Probability, 2012