The Annals of Applied Probability

A characterization of hedging portfolios for interest rate contingent claims

Rene Carmona and Michael Tehranchi

Full-text: Open access

Abstract

We consider the problem of hedging a European interest rate contingent claim with a portfolio of zero-coupon bonds and show that an HJM type Markovian model driven by an infinite number of sources of randomness does not have some of the shortcomings found in the classical finite-factor models. Indeed, under natural conditions on the model, we find that there exists a unique hedging strategy, and that this strategy has the desirable property that at all times it consists of bonds with maturities that are less than or equal to the longest maturity of the bonds underlying the claim.

Article information

Source
Ann. Appl. Probab., Volume 14, Number 3 (2004), 1267-1294.

Dates
First available in Project Euclid: 13 July 2004

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1089736285

Digital Object Identifier
doi:10.1214/105051604000000297

Mathematical Reviews number (MathSciNet)
MR2071423

Zentralblatt MATH identifier
1048.60049

Subjects
Primary: 60H35: Computational methods for stochastic equations [See also 65C30]
Secondary: 60H07: Stochastic calculus of variations and the Malliavin calculus 91B28

Keywords
Fixed income markets Malliavin calculus infinite-dimensional processes hedging portfolios

Citation

Carmona, Rene; Tehranchi, Michael. A characterization of hedging portfolios for interest rate contingent claims. Ann. Appl. Probab. 14 (2004), no. 3, 1267--1294. doi:10.1214/105051604000000297. https://projecteuclid.org/euclid.aoap/1089736285


Export citation

References

  • Björk, T., Di Masi, G., Kabanov, Y. and Runggaldier, W. (1997). Towards a general theory of bond markets. Finance Stochast. 1 141–174.
  • Bouchaud, J. P., Cont, R., El Karoui, N., Potters, M. and Sagna, N. (1999). Phenomenology of the interest rate curve: A statistical analysis of term structure deformations. Appl. Math. Finance 6 209–232.
  • Brace, A. and Musiela, M. (1994). A multifactor Gauss–Markov implementation of Heath, Jarrow and Morton. Math. Finance 2 259–283.
  • Carmona, R. (2004). Interest rate models: From parametric statistics to infinite-dimensional stochastic analysis. SIAM. To appear.
  • Clark, J. M. (1970). The representation of functionals of Brownian motion by stochastic integrals. Ann. Math. Statist. 41 1282–1295.
  • Cont, R. (2004). Modeling term structure dynamics: An infinite dimensional approach. Int. J. Theor. Appl. Finance. To appear.
  • Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press.
  • De Donno, M. and Pratelli, M. (2004). On the use of measured-valued strategies in bond markets. Finance Stochast. 8 87–109.
  • Douady, R. (1997). Yield curve smoothing and residual variance of fixed income positions. Working paper, Courant Institute, New York Univ.
  • Ekeland, I. and Taflin, E. (2002). A theory of bond portfolios. Working Paper, CEREMADE, Universit de Paris IX, Dauphine.
  • Filipovic, D. (2001). {Consistency Problems for Heath–Jarrow–Morton
  • Interest Rate Models}. Lecture Notes in Math. Springer, Berlin.
  • Goldys, B. and Musiela, M. (1996). On partial differential equations related to term structure models. Preprint, Univ. New South Wales.
  • Heath, D., Jarrow, R. and Morton, A. (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica 60 77–105.
  • Kallianpur, G. and Xiong, J. (1995). Stochastic Differential Equations in Infinite Dimensional Spaces. IMS, Hayward, CA.
  • Karatzas, I. and Ocone, D. (1991). A generalized Clark representation formula, with application to optimal portfolios. Stochastics Stochastics Rep. 34 187–220.
  • Karatzas, I., Ocone, D. and Li, J. (1991). An extenstion of Clark's formula. Stochastics Stochastics Rep. 37 127–131.
  • Karatzas, I. and Shreve, S. (1988). Brownian Motion and Stochastic Calculus. Springer, Berlin, New York.
  • Litterman, R. and Scheinkman, J. (1991). Common factors affecting bond returns. J. Fixed Income 1 49–53.
  • Løkka, A. (1999). Martingale representation, chaos expansion, and Clark–Ocone formulas. MPS-RR 1999-22.
  • Musiela, M. (1993). Stochastic PDEs and term structure models. Journèes Internationales de Finance.
  • Musiela, M. and Rutkowski, M. (1997). Continuous-time term structure models: Forward meaure approach. Finance Stochast. 1 261–291.
  • Nualart, D. (1995). The Malliavin Calculus and Related Topics. Springer, Berlin, New York.
  • Ocone, D. (1984). Malliavin's calculus and stochastic integral representation of functionals of diffusion processes. Stochastics Stochastics Rep. 12 535–581.
  • Skorohod, A.V. (1984). Random Linear Operators. Reidel, Dordrecht.
  • Tehranchi, M. (2002). Applications of infinite-dimensional stochastic analysis to problems in fixed income markets. Ph.D. dissertation, Princeton Univ.