The Annals of Applied Probability

Diffusion approximation for a processor sharing queue in heavy traffic

H. Christian Gromoll

Full-text: Open access

Abstract

Consider a single server queue with renewal arrivals and i.i.d. service times in which the server operates under a processor sharing service discipline. To describe the evolution of this system, we use a measure valued process that keeps track of the residual service times of all jobs in the system at any given time. From this measure valued process, one can recover the traditional performance processes, including queue length and workload. We show that under mild assumptions, including standard heavy traffic assumptions, the (suitably rescaled) measure valued processes corresponding to a sequence of processor sharing queues converge in distribution to a measure valued diffusion process. The limiting process is characterized as the image under an appropriate lifting map, of a one-dimensional reflected Brownian motion. As an immediate consequence, one obtains a diffusion approximation for the queue length process of a processor sharing queue.

Article information

Source
Ann. Appl. Probab., Volume 14, Number 2 (2004), 555-611.

Dates
First available in Project Euclid: 23 April 2004

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1082737104

Digital Object Identifier
doi:10.1214/105051604000000035

Mathematical Reviews number (MathSciNet)
MR2052895

Zentralblatt MATH identifier
1050.60085

Subjects
Primary: 60K25: Queueing theory [See also 68M20, 90B22]
Secondary: 68M20: Performance evaluation; queueing; scheduling [See also 60K25, 90Bxx] 90B22: Queues and service [See also 60K25, 68M20]

Keywords
Processor sharing queue heavy traffic diffusion approximation state space collapse measure valued process

Citation

Gromoll, H. Christian. Diffusion approximation for a processor sharing queue in heavy traffic. Ann. Appl. Probab. 14 (2004), no. 2, 555--611. doi:10.1214/105051604000000035. https://projecteuclid.org/euclid.aoap/1082737104


Export citation

References

  • Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • Bramson, M. (1998). State space collapse with applications to heavy traffic limits for multiclass queueing networks. Queueing Systems Theory Appl. 30 89--148.
  • Doytchinov, B., Lehoczky, J. and Shreve, S. (2001). Real-time queues in heavy traffic with earliest-deadline-first queue discipline. Ann. Appl. Probab. 11 332--378.
  • Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • Grishechkin, S. (1994). $GI/GI/1$ processor sharing queue in heavy traffic. Adv. in Appl. Probab. 26 539--555.
  • Gromoll, H. C., Puha, A. L. and Williams, R. J. (2002). The fluid limit of a heavily loaded processor sharing queue. Ann. Appl. Probab. 12 797--859.
  • Harrison, J. M. (1985). Brownian Motion and Stochastic Flow Systems. Wiley, New York.
  • Harrison, J. M. and Williams, R. J. (1992). Brownian models of feedforward queueing networks: Quasireversibility and product form solutions. Ann. Appl. Probab. 2 263--293.
  • Iglehart, D. L. and Whitt, W. (1970). Multiple channel queues in heavy traffic I. Adv. in Appl. Probab. 2 150--177.
  • Kallenberg, O. (1986). Random Measures. Academic Press, New York.
  • Kruk, \L., Lehoczky, J., Shreve, S. and Yeung, S.-N. (2003). Multiple-input heavy-traffic real-time queues. Ann. Appl. Probab. 13 54--99.
  • Limic, V. (2000). On the behavior of \uppercaseLIFO preemptive resume queues in heavy traffic. Electron. Comm. Probab. 5 13--27.
  • Limic, V. (2001). A LIFO queue in heavy traffic. Ann. Appl. Probab. 11 301--332.
  • Prohorov, Y. V. (1956). Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1 157--214.
  • Puha, A. L., Stolyar, A. L. and Williams, R. J. (2003). The fluid limit of an overloaded processor sharing queue. In XXIX Conference on Stochastic Processes and Their Applications.
  • Puha, A. L. and Williams, R. J. (2004). Invariant states and rates of convergence for a critical fluid model of a processor sharing queue. Ann. Appl. Probab. 14 517--554.
  • Williams, R. J. (1998). Diffusion approximations for open multiclass queueing networks: Sufficient conditions involving state space collapse. Queueing Systems Theory Appl. 30 27--88.
  • Yashkov, S. F. (1987). Processor-sharing queues: Some progress in analysis. Queueing Systems Theory Appl. 2 1--17.