The Annals of Applied Probability

Computable exponential convergence rates for stochastically ordered Markov processes

Robert B. Lund, Sean P. Meyn, and Richard L. Tweedie

Full-text: Open access

Abstract

Let ${\Phi_t, t \geq 0}$ be a Markov process on the state space $[0, \infty)$ that is stochastically ordered in its initial state. Examples of such processes include server workloads in queues, birth-and-death processes, storage and insurance risk processes and reflected diffusions. We consider the existence of a limiting probability measure $\pi$ and an exponential "convergence rate" $\alpha > 0$ such that $$\lim_{t \to \infty} e^{\alpha t} \sup_A |P_x[\Phi_t \epsilon A] - \pi (A)| = 0$$ for every initial state $\Phi_0 \equiv x$.

The goal of this paper is to identify the largest exponential convergence rate $\alpha$, or at least to find computationally reasonable bounds for such a "best" $\alpha$. Coupling techniques are used to derive such results in terms of (i) the moment-generating function of the first passage time into state ${0}$ and (ii) solutions to drift inequalities involving the generator of the process. The results give explicit bounds for total variation convergence of the process; convergence rates for $E_x [f(\Phi_t)]$ to $\int f(y) \pi (dy)$ for an unbounded function f are also found. We prove that frequently the bounds obtained are the best possible. Applications are given to dam models and queues where first passage time distributions are tractable, and to one-dimensional reflected diffusions where the generator is the more appropriate tool. An extension of the results to a multivariate setting and an analysis of a tandem queue are also included.

Article information

Source
Ann. Appl. Probab., Volume 6, Number 1 (1996), 218-237.

Dates
First available in Project Euclid: 18 October 2002

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1034968072

Digital Object Identifier
doi:10.1214/aoap/1034968072

Mathematical Reviews number (MathSciNet)
MR1389838

Zentralblatt MATH identifier
0863.60093

Subjects
Primary: 60K25: Queueing theory [See also 68M20, 90B22]
Secondary: 60J25: Continuous-time Markov processes on general state spaces

Keywords
total variation exponential ergodicity coupling dam processes drift functions reflected diffusions tandem queues

Citation

Lund, Robert B.; Meyn, Sean P.; Tweedie, Richard L. Computable exponential convergence rates for stochastically ordered Markov processes. Ann. Appl. Probab. 6 (1996), no. 1, 218--237. doi:10.1214/aoap/1034968072. https://projecteuclid.org/euclid.aoap/1034968072


Export citation

References

  • ABATE, J. and WHITT, W. 1987. Transient behavior of regulated Brownian motion. I. Starting at the origin. Adv. in Appl. Probab. 19 560 598. Z. AFANAS'EVA, L. G. 1985. On periodic distribution of waiting-time process. In Stability Problems for Stochastic Models. Lecture Notes in Math. 155 1 20. Springer, New York. Z.
  • ASMUSSEN, S. 1987. Applied Probability and Queues. Wiley, New York. Z.
  • BACCELLI, F. and FOSS, S. 1994. Ergodicity of Jackson-ty pe queueing networks. QUESTA 17 5 72. Z.
  • BROCKWELL, P. J., RESNICK, S. I. and TWEEDIE, R. L. 1982. Storage processes with general release rule and additive inputs. Adv. in Appl. Probab. 14 392 433. Z.
  • COHEN, J. W. 1982. The Single Server Queue, rev. ed. North-Holland, Amsterdam. Z.
  • DAVIS, M. H. A. 1993. Markov Models and Optimization. Chapman and Hall, London. Z.
  • DOWN, D., MEy N, S. P. and TWEEDIE, R. L. 1995. Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23 1671 1691. Z.
  • HEATHCOTE, C. R. 1967. Complete exponential convergence and related topics. J. Appl. Probab. 4 1 40. Z.
  • ICHIHARA, K. and KUNITA, H. 1974. A classification of the second order degenerate elliptic operators and its probabilistic characterization. Z. Wahrsch. Verw. Gebiete 30 235 254. Z.
  • KALASHNIKOV, V. 1994. Topics on Regenerative Processes. CRC Press, London. Z.
  • KAMAE, T., KRENGEL, U. and O'BRIEN, G. L. 1977. Stochastic inequalities on partially ordered spaces. Ann. Probab. 5 899 912. Z.
  • KELLA, O. and WHITT, W. 1992. Useful martingales for stochastic storage processes with Levy ´ input. J. Appl. Probab. 29 396 403. Z.
  • LINDVALL, T. 1992. Lectures on the Coupling Method. Wiley, New York. Z.
  • LUND, R. B. 1994. A dam with seasonal input. J. Appl. Probab. 31 526 541. Z.
  • LUND, R. B. 1995. A comparison of convergence rates for three models in the theory of dams. J. Appl. Probab. To appear. Z.
  • LUND, R. B. and TWEEDIE, R. L. 1995. Geometric convergence rates for stochastically ordered Markov chains. Math. Oper. Res. To appear. Z.
  • MEy N, S. P. and DOWN, D. 1994. Stability of generalized Jackson networks. Ann. Appl. Probab. 4 124 148. Z.
  • MEy N, S. P. and TWEEDIE, R. L. 1993a. Stability of Markovian processes. II. Continuous-time processes and sampled chains. Adv. in Appl. Probab. 25 487 517. Z.
  • MEy N, S. P. and TWEEDIE, R. L. 1993b. Stability of Markovian processes. III: Foster Ly apunov criteria for continuous-time processes. Adv. in Appl. Probab. 25 518 548. Z.
  • MEy N, S. P. and TWEEDIE, R. L. 1993c. Markov Chains and Stochastic Stability. Springer, London. Z.
  • MORSE, P. M. 1958. Queues, Inventories and Maintenance. Wiley, New York. Z.
  • PRABHU, N. U. 1980. Stochastic Storage Models. Springer, New York. Z.
  • ROSENKRANTZ, W. A. 1983. Calculation of the Laplace transform of the length of the busy period for the M G 1 queue via martingales. Ann. Probab. 11 817 818.
  • SHANTHIKUMAR, J. G. and YAO, D. D. 1989. Stochastic monotonicity in general queueing networks. J. Appl. Probab. 26 413 417. Z.
  • STOy AN, D. 1983. Comparison Methods for Queues and Other Stochastic Models. Wiley, New York. Z.
  • THORISSON, H. 1983. The coupling of regenerative processes. Adv. in Appl. Probab. 15 531 561. Z.
  • TUOMINEN, P. and TWEEDIE, R. L. 1979. Exponential ergodicity in Markovian queueing and dam models. J. Appl. Probab. 16 867 880. Z.
  • VAN DOORN, E. A. 1981. Stochastic Monotonicity and Queueing Applications of Birth Death Processes. Lecture Notes in Statist. 4. Springer, New York. Z.
  • VAN DOORN, E. A. 1985. Conditions for the exponential ergodicity and bounds for the decay parameter of a birth death process. J. Appl. Probab. 17 514 530. Z.
  • VERAVERBEKE, N. and TEUGELS, J. L. 1975. The exponential rate of convergence of the distribution of a maximum of a random walk. J. Appl. Probab. 12 279 288. Z.
  • VERAVERBEKE, N. and TEUGELS, J. L. 1976. The exponential rate of convergence of the distribution of a maximum of a random walk. II. J. Appl. Probab. 13 733 740. Z.
  • ZEIFMAN, A. I. 1991. Some estimates of the rate of convergence for birth and death processes. J. Appl. Probab. 28 268 277.
  • ATHENS, GEORGIA 30602-1952 1308 WEST MAIN STREET E-mail: lund@stat.uga.edu URBANA, ILLINOIS 61801 E-mail: mey n@Fourier.csl.uiuc.edu R. L. TWEEDIE DEPARTMENT OF STATISTICS COLORADO STATE UNIVERSITY
  • FORT COLLINS, COLORADO 80523 E-mail: tweedie@stat.colostate.edu