## The Annals of Applied Probability

### Asymptotic behavior for iterated functions of random variables

#### Abstract

Let $\mathscr{D} \subseteq (-\infty, \infty)$ be closed domain and set $\xi = \inf{x;x \epsilon \mathscr{D}}$. Let the sequence $\mathscr{X}^n = {X_j^{(n)}; j \geq 1}, n \geq 1$ be associated with the sequence of measurable iterated functions $f_n(x_1, x_2,\dots, x_{k_n}): \mathscr{D}^{k_n} \rightarrow \mathscr{D} (k_n \geq 2), n \geq 1$ and some initial sequence $\mathscr{X}^{(0)} = {X_j^{(0)}; j \geq 1}$ of stationary and m-dependent random variables such that $P(X_1^{(0)} \epsilon \mathscr{D}) = 1$ and $X_j^{(n)} = f_n(X_{(j-1)k_n+1}^{(n-1)},\dots, X_{jk_n}^{(n-1)}), j \geq 1, n \geq 1$. This paper studies the asymptotic behavior for the hierarchical sequence ${X_1^{(n)}; n \geq 0}$. We establish general asymptotic results for such sequences under some surprisingly relaxed conditions. Suppose that, for each $n \geq 1$, there exist $k_n$ non-negative constants $\alpha_{n, i}, 1 \leq i \leq k_n$ such that $\Sigma_{i=1}^{k_n} \alpha_{n, i} = 1$ and $f_n(x_1,\dots, x_{k_n}) \leq \Sigma_{i=1}^{k_n} \alpha_{n, i}x_i, \forall(x_1,\dots, x_{k_n}) \epsilon \mathscr{D}^{k_n}$. If $\Pi_{j=1}^n \max_{1\leqi\leqk_j \alpha_{j, i} \rightarrow 0$ as $n \rightarrow \infty$ and $E(X_1^{(n)}) \downarrow \lambda$ as $n \rightarrow \infty$ and $X_1^{(n)} \rightarrow_P \lambda$. We conclude with various examples, comments and open questions and discuss further how our results can be applied to models arising in mathematical physics.

#### Article information

Source
Ann. Appl. Probab., Volume 9, Number 4 (1999), 1175-1201.

Dates
First available in Project Euclid: 21 August 2002

https://projecteuclid.org/euclid.aoap/1029962869

Digital Object Identifier
doi:10.1214/aoap/1029962869

Mathematical Reviews number (MathSciNet)
MR1728559

Zentralblatt MATH identifier
0963.60029

#### Citation

Li, Deli; Rogers, T. D. Asymptotic behavior for iterated functions of random variables. Ann. Appl. Probab. 9 (1999), no. 4, 1175--1201. doi:10.1214/aoap/1029962869. https://projecteuclid.org/euclid.aoap/1029962869

#### References

• Bernasconi, J. (1978). Real renormalization of bond disordered conductance lattices. Phy s. Rev. B 18 2185-2191.
• Blumenfeld, R. (1988). Probability densities of homogeneous functions: explicit approximations and applications to percolating networks. J. Phy s. A 21 815-825.
• Boppana, R. and Naray an, B. (1993). The biased coin problem. In Proceedings of the 25th ACM Sy mposium on Theory of Computing 252-257. ACM Press, New York.
• Bovin, V. P., Vas'kin, V. V. and Shneiberg, I. Ya. (1983). On recursive models in flow theory. Teor. Mat. Fiz. 54 268-276.
• Chow, Y. S. and Teicher, H. (1988). Probability: Independence, Interchangeability, Martingales. Springer, New York.
• Collet, P. and Eckmann, J.-P. (1978). A Renormalization Group Analy sis of the Hierarchical Model in Statistical Mechanics. Springer, New York.
• de Haan, L. (1970). On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. Math Centre Tract 32. Math Centrum, Amsterdam.
• de Haan, L. (1976). Sample extremes: an elementary introduction. Statist. Neerlandica 30 161-172.
• Derrida, B. (1986). Pure and random models of statistical mechanics on hierarchical lattices. In Critical Phenomena, Random Sy stems and Gauge Theories (K. Osterwalder and R. Stora, eds.) 989-999 North-Holland, Amsterdam.
• Galambos, J. (1978). The Asy mptotic Theory of Extreme Order Statistics. Wiley, New York.
• Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une s´erie al´eatoire. Ann. Math. 44 423-453.
• Griffiths, R and Kaufman, M. (1982). Spin sy stems on hierarchical lattices. Introduction and thermody namic limit. Phy s. Rev. B 26 5022-5032.
• Koch, H. and Wittwer, P. (1994). A nontrivial renormalization group fixed point for the Dy son- Baker hierarchical model. Comm. Math. Phy s. 164 627-647.
• Leadbetter, M. R., Lindgren, G. and Rootzen, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, Berlin.
• Li, D. L., Rao, M. B., Jiang, T. F. and Wang, X. C. (1995). Complete convergence and almost sure convergence of weighted sums of random variables. J. Theoret. Probab. 8 49-76. Moore, E. and Shannon, C. E. (1956a). Reliable circuits using less reliable relay s I. J. Franklin Inst. 262 191-208. Moore, E. and Shannon, C. E. (1956b). Reliable circuits using less reliable relay s II. J. Franklin Inst. 262 281-297.
• Newman, W. I., Gabrielove, A. M., Durand, T. A., Phoenix, S. L. and Turcotte, D. L. (1994). An exact renormalization model for earthquakes and material failure. Statics and dy namics. Phy s. D 77 200-216.
• Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York.
• Schenkel, A., Wehr, J. and Wittwer, P. (1998). A non-Gaussian renormalization group fixed point in a hierarchical model of random resistors. Unpublished manuscript.
• Schl ¨osser, T. and Spohn, H. (1992). Sample-to-sample fluctuations in the conductivity of a disordered medium. J. Statist. Phy s. 69 955-967.
• Shneiberg, I. (1986). Hierarchical sequences of random variables. Theory Probab. Appl. 31 137- 141.
• Sinai, Ya. G. (1982). Theory and Phase Transitions: Rigorous Results. Pergamon Press, Oxford.
• Stinchcombe, R. B. and Watson, B. P. (1976). Renormalization group approach for percolation conductivity. J. Phy s. C 9 3221-3232.
• Wehr, J. (1997). A strong law of large numbers for iterated functions of independent random variables. J. Statist. Phy s. 86 1373-1384.
• Weissman, I. (1975). Extremal processes generated by independent nonidentically distributed random variables. Ann. Probab. 3 172-178.