The Annals of Applied Probability

The geometry of correlation fields with an application to functional connectivity of the brain

Jin Cao and Keith Worsley

Full-text: Open access

Abstract

We introduce two new types of random field. The cross correlation field $R(\mathbf{s}, \mathbf{t})$ is the usual sample correlation coefficient for a set of pairs of Gaussian random fields, one sampled at point $s \epsilon \Re^M$, the other sampled at point $\mathbf{t} \epsilon \Re^N$. The homologous correlation field is defined as $R(\mathbf{t}) = R(\mathbf{t}, \mathbf{t})$, that is, the "diagonal" of the cross correlation field restricted to the same location $\mathbf{s} = \mathbf{t}$. Although the correlation coefficient can be transformed pointwise to a t-statistic, neither of the two correlation fields defined above can be transformed to a t-field, defined as a standard Gaussian field divided by the root mean square of i.i.d. standard Gaussian fields. For this reason, new results are derived for the geometry of the excursion set of these correlation fields that extend those of Adler. The results are used to detect functional connectivity (regions of high correlation) in three-dimensional positron emission tomography (PET) images of human brain activity.

Article information

Source
Ann. Appl. Probab., Volume 9, Number 4 (1999), 1021-1057.

Dates
First available in Project Euclid: 21 August 2002

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1029962864

Digital Object Identifier
doi:10.1214/aoap/1029962864

Mathematical Reviews number (MathSciNet)
MR1727913

Zentralblatt MATH identifier
0961.60052

Subjects
Primary: 60G15: Gaussian processes

Keywords
Random field Euler characteristic image analysis

Citation

Cao, Jin; Worsley, Keith. The geometry of correlation fields with an application to functional connectivity of the brain. Ann. Appl. Probab. 9 (1999), no. 4, 1021--1057. doi:10.1214/aoap/1029962864. https://projecteuclid.org/euclid.aoap/1029962864


Export citation

References

  • ADLER, R. J. 1981. The Geometry of Random Fields. Wiley, New York. Z.
  • ADLER, R. J. 1998. On excursion sets, tube formulae, and maxima of random fields. Ann. Appl. Probab. To appear. Z.
  • ALDOUS, D. 1989. Probability Approximations via the Poisson Clumping Heuristic. Springer, New York. Z. 2
  • ARONOWICH, M. and ADLER, R. J. 1986. Extrema and level crossings of processes. Adv. in Appl. Probab. 18 901 920. Z. 2
  • ARONOWICH, M. and ADLER, R. J. 1988. Sample path behavior of surfaces at extrema. Adv. in Appl. Probab. 20 719 738.
  • BULLMORE, E. T., RABE-HESKETH, S., MORRIS, R. G., WILLIAMS, S. C. R., GREGORY, L., GRAY, J. A. Z. and BRAMMER, M. J. 1996. Functional magnetic resonance image analysis of a large-scale neurocognitive network. NeuroImage 4 16 33. Z. 2
  • CAO, J. 1999. The size of the connected components of excursion sets of, t and F fields. Adv. in Appl. Probab. 31 577 593. Z.
  • FRISTON, K. J., BUCHEL, C., FINK, G. R., MORRIS, J., ROLLS, E. and DOLAN, R. J. 1997. ¨ Psy chophysiological and modulatory interactions in neuroimaging. NeuroImage 6 218 229. Z.
  • FRISTON, K. J., FRITH, C. D., FRACKOWIAK, R. S. J. and TURNER, R. 1995. Characterizing dy namic brain responses with fMRI: a multivariate approach. NeuroImage 2 166 172. Z.
  • FRISTON, K. J., FRITH, C. D., LIDDLE, P. F. and FRACKOWIAK, R. S. J. 1993. Functional connectivZ. ity: The principal-component analysis of large PET data sets. J. Cerebral Blood Flow and Metabolism 13 5 14. Z.
  • FRISTON, K. J., WORSLEY, K. J., FRACKOWIAK, R. S. J., MAZZIOTTA, J. and EVANS, A. C. 1994. Assessing the significance of focal activations using their spatial extent. Human Brain Mapping 1 214 220.
  • HASOFER, A. M. 1979. Upcrossings of random fields. Supplement to Adv. in Appl. Probab. 10 14 21.
  • HORWITZ, B., GRADY, C. L., MENTIS, M. J., PIETRINI, P., UNGERLEIDER, L. G., RAPOPORT, S. I. and Z.
  • HAXBY, J. V. 1996. Brain functional connectivity changes as task difficulty is altered. NeuroImage 3 S248. Z.
  • KAC, M. and SLEPIAN, D. 1959. Large excursions of Gaussian processes. Ann. Math. Statist. 30 1215 1228. Z.
  • LINDGREN, G. 1972. Local maxima of Gaussian fields. Ark. Math. 10 195 218. Z.
  • MCINTOSH, A. R. and GONZALEZ-LIMA, F. 1994. Structural equation modeling and its application to network analysis of functional brain imaging. Human Brain Mapping 2 2 22. Z.
  • NAIMAN, D. Q. and Wy NN, H. P. 1992. Inclusion-exclusion-Bonferroni identities and inequalities for discrete tube-like problems via Euler characteristics. Ann. Statist. 20 43 76.
  • PAUS, T., ZATORRE, R. J., HOFLE, N., ZOGRAFOS, C., GOTMAN, J., PETRIDES, M. and EVANS, A. C. Z. 1997. Time-related changes in neural sy stems underlying attention and arousal during the performance of an auditory vigilance task. J. Cognitive Neuroscience 9 392 408. Z.
  • SIEGMUND, D. O. and WORSLEY, K. J. 1995. Testing for a signal with unknown location and scale in a stationary Gaussian random field. Ann. Statist. 23 608 639.
  • STROTHER, S. C., ANDERSON, J. R., SCHAPER, K. A., SIDTIS, J. J., LIOW, J. S., WOODS, R. P. and Z.
  • ROTTENBERG, D. A. 1995. Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping I. ``Functional connectivity'' of the human motor sy stem studied with O15 water PET. J. Cerebral Blood Flow and Metabolism 15 738 753. Z.
  • TORRES, S. 1994. Topological analysis of COBE-DMR cosmic microwave background maps. Astrophysical Journal 423 L9 L12. Z.
  • VOGELEY, M. S., PARK, C., GELLER, M. J., HUCHRA, J. P. and GOTT, J. R. 1994. Topological analysis of the CfA redshift survey. Astrophysical Journal 420 525 544. Z.
  • WORSLEY, K. J. 1994. Local maxima and the expected Euler characteristic of excursion sets of 2, F and t fields. Adv. in Appl. Probab. 26 13 42. Z.
  • WORSLEY, K. J. 1995a. Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics. Adv. in Appl. Probab. 27 943 959. Z.
  • WORSLEY, K. J. 1995b. Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images. Ann. Statist. 23 640 669.
  • MURRAY HILL, NEW JERSEY 07974-2070 MONTREAL, QUEBEC ´ ´ E-MAIL: cao@research.bell-labs.com CANADA H3A 2K6 E-MAIL: worsley@math.mcgill.ca.