The Annals of Applied Probability

Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent

James R. Norris

Full-text: Open access


Sufficient conditions are given for existence and uniqueness in Smoluchowski's coagulation equation, for a wide class of coagulation kernels and initial mass distributions. An example of nonuniqueness is constructed. The stochastic coalescent is shown to converge weakly to the solution of Smoluchowski's equation.

Article information

Ann. Appl. Probab., Volume 9, Number 1 (1999), 78-109.

First available in Project Euclid: 21 August 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82C21: Dynamic continuum models (systems of particles, etc.)
Secondary: 60H35: Computational methods for stochastic equations [See also 65C30]

Smoluchowski's coagulation equation stochastic coalescent hydrodynamic limit


Norris, James R. Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9 (1999), no. 1, 78--109. doi:10.1214/aoap/1029962598.

Export citation


  • [1] Aldous, D. J. (1998). Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists. Bernoulli. To appear.
  • [2] Ball, J. M. and Carr, J. (1990). The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation. J. Statist. Phy s. 61 203-234.
  • [3] Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Rev. Modern Phy s. 15 1-89.
  • [4] Clark, J. M. C. and Katsouros, V. (1999). Stably coalescent stochastic froths. Adv. Appl. Probab. To appear.
  • [5] Dubovski i, P. B. and Stewart, I. W. (1996). Existence, uniqueness and mass conservation for the coagulation-fragmentation equation. Math. Methods Appl. Sci. 19 571-591.
  • [6] Ethier, S. N. and Kurtz, T. K. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • [7] Heilmann, O. J. (1992). Analy tical solutions of Smoluchowski's coagulation equation. J. Phy s. A 25 3763-3771.
  • [8] Jakubowski, A. (1986). On the Skorokhod topology. Ann. Inst. H. Poincar´e Probab. Statist. 22 263-285.
  • [9] Jeon, I. (1998). Existence of getting solutions for coagulation-fragmentation equations. Commun. Math. Phy s. To appear.
  • [10] Lushnikov, A. A. (1978). Certain new aspects of the coagulation theory. Izv. Acad. Sci. USSR Atmospher. Ocean Phy s. 14 738-743.
  • [11] Marcus, A. H. (1968). Stochastic coalescence. Technometrics 10 133-143.
  • [12] McLeod, J. B. (1962). On an infinite set of nonlinear differential equations. Quart. J. Math. Oxford 13 119-128.
  • [13] McLeod, J. B. (1964). On the scalar transport equation. Proc. London Math. Soc. 14 445- 458.
  • [14] Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
  • [15] van Smoluchowski, M. (1916). Drei Vortr¨age ¨uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. physik. Z. 17 557-585.
  • [16] White, W. H. (1980). A global existence theorem for Smoluchowski's coagulation equations. Proc. Amer. Math. Soc. 80 273-276.