The Annals of Applied Probability

Nonreversible stationary measures for exchange processes

Amine Asselah

Full-text: Open access


We consider nonreversible exchange dynamics in $Z^d$ and prove that the stationary, translation invariant measures satisfy the following property: if one of them is a Gibbs measure with a summable potential ${J_R, R \subset Z^d}$, then all of them are convex combinations of Gibbs measures with the same potential, but different chemical potentials $J_{\{0\}}$.

Article information

Ann. Appl. Probab., Volume 8, Number 4 (1998), 1303-1311.

First available in Project Euclid: 9 August 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 28D10: One-parameter continuous families of measure-preserving transformations 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C22: Interacting particle systems [See also 60K35]

Relative entropy Gibbs measures nonreversible stationary measures


Asselah, Amine. Nonreversible stationary measures for exchange processes. Ann. Appl. Probab. 8 (1998), no. 4, 1303--1311. doi:10.1214/aoap/1028903382.

Export citation


  • Ey ink, G., Lebowitz, J. and Spohn, H. (1996). Hy drody namics and fluctuations outside of local equilibrium: driven diffusive sy stems. J. Statist. Phy s. 83.
  • Georgii, H. O. (1979). Canonical Gibbs Measures. Lecture Notes in Math. 760. Springer, Berlin.
  • Holley, R. (1971). Free energy in a Markovian model of a lattice spin sy stem. Comm. Math. Phy s. 23 87-99.
  • Holley, R. (1972). Pressure and Helmholtz free energy in a dy namic model of a lattice gas. Proc. Sixth Berkeley Sy mp. Math. Statist. Probab. 3 565-578. Univ. California Press, Berkeley.
  • Holley, R. and Stroock, D. (1977). In one and two dimensions every stationary measure for a stochastic Ising model is a Gibbs state. Comm. Math. Phy s. 55 37-45.
  • Katz, S., Lebowitz, J. and Spohn, H. (1984). Nonequilibrium steady state of stochastic lattice gas models of fast ionic conductors. J. Statist. Phy s. 34 497-537.
  • K ¨unsch, H. (1984). Nonreversible stationary measures for infinite particle sy stems. Z. Wahrsch. Verw. Gebiete 66 407-424.
  • Liggett, T. (1976). Coupling the simple exclusion process. Ann. Probab. 4 339-356.
  • Liggett, T. (1985). Interacting Particle Sy stems. Springer, New York.
  • Vanheuverzwijn, P. (1981). A note on the stochastic lattice-gas model. J. Phy s A 14 1149-1158.