The Annals of Applied Probability

On the averaged dynamics of the random field Curie-Weiss model

Luiz Renato Fontes, Pierre Mathieu, and Pierre Picco

Full-text: Open access


We describe the averaged over the disordered dynamics for the random field Curie–Weiss model. We consider both the magnetization and the full spin dynamics.Our approach is based on spectral asymptotics and includes results on the random fluctuations of eigenvalues and eigenvectors.

Article information

Ann. Appl. Probab., Volume 10, Number 4 (2000), 1212-1245.

First available in Project Euclid: 22 April 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.) 82D30: Random media, disordered materials (including liquid crystals and spin glasses) 82C44: Dynamics of disordered systems (random Ising systems, etc.)

Metastability glauber dynamics random field Curie-Weiss model


Fontes, Luiz Renato; Mathieu, Pierre; Picco, Pierre. On the averaged dynamics of the random field Curie-Weiss model. Ann. Appl. Probab. 10 (2000), no. 4, 1212--1245. doi:10.1214/aoap/1019487614.

Export citation


  • [1] Aharony, A. (1978). Tricritical points in systems with random fields. Phys. Rev. B 18 3318-3327.
  • [2] Amaro de Matos, J. M. G., Patrick, A. E. and Zagrebnov, V. A. (1992). Random infinite volume Gibbs states for the Curie-Weiss random field Ising model. J. Statist. Phys. 66 139-164.
  • [3] Amaro de Matos, J. M. G. and Perez, J. F. (1991). Fluctuations in the Curie-Weiss version of the random field Ising model. J. Statist. Phys. 62 587-608.
  • [4] Bovier, A. and Picco, P. (eds) (1998). Mathematical Aspects of Spin Glasses and Neural Networks. Birkh¨auser, Boston.
  • [5] Dai Pra, P. and den Hollander, F. (1996). McKean-Vlasov limit for interacting random processes in random media. J. Statist. Phys. 84 735-772.
  • [6] Derrida, B. (1980). Random energy model: limit of a family of disordered models. Phys. Rev. Lett. 45 79-82.
  • [7] Derrida, B. (1981). Random energy model: an exactly solvable model of disordered systems. Phys. Rev. B 24 2613-2626.
  • [8] Cassandro, M., Galves, A., Olivieri, E. and Vares, M. E. (1984). Metastable behavior of stochastic dynamics: a pathwise approach. J. Statist. Phys. 35 603-634.
  • [9] Eisele, T. (1983). On a third order phase transition. Comm. Math. Phys. 90 125-159.
  • [10] Ellis, R. S. (1985). Entropy, Large Deviations, and Statistical Mechanics. Springer, New York.
  • [11] Fontes, L. R., Isopi, M., Kohayakawa, Y. and Picco, P. (1998). The spectral gap of the REM under metropolis dynamics. Ann. Appl. Probab. 8 917-943.
  • [12] Funaki, T., Uchiyama, K. and Yau, H. T. (1996). Hydrodynamic limit for lattice gas reversible under Bernoulli measures. In Nonlinear Stochastic PDEs (T. Funaki and W. A. Woyczinski, eds) 1-40. Springer, New York.
  • [13] Galves, A., Mart´inez, S. and Picco, P. (1989). Fluctuations in Derrida's random energy and generalized random energy models. J. Statist. Phys. 54 515-529.
  • [14] K ¨ulske, K. (1997). Metastates in disordered mean field models: random field and Hopfield models. J. Statist. Phys. 88 1257-1293.
  • [15] Mathieu, P. and Picco, P. (1998). Metastability and convergence to equilibrium for the random field Curie-Weiss model. J. Statist. Phys. 91 679-732.
  • [16] Newman, C. M. (1997). Topics in Disordered Systems. Birkh¨auser, Boston.
  • [17] Olivieri, E., and Picco, P. (1984). On the existence of thermodynamics for the random energy model. Comm. Math. Phys. 96 125-144.
  • [18] Saloff-Coste, L. (1997). Lectures on finite Markov chains. Ecole d' ´Et´e de Saint Flour. Lecture Notes in Math. Springer, Berlin.
  • [19] Salinas, S. R. and Wreszinski W. F. (1985). On the mean field Ising model in a random external field. J. Statist. Phys. 41 299-313.
  • [20] Schneider, T. and Pytte, E. (1977). Random field instability of the ferromagnetic state. Phys. Rev. B 15 1519-1522.
  • [21] Talagrand, M. (1998). The Sherrington-Kirkpatrick model: a challenge for mathematicians. Probab. Theory Related Fields 110 109-176.
  • CMI, Universit´e de Provence 39 Rue F. Joliot Curie 13453 Marseille Cedex 13 France E-mail: P. Picco CPT-CNRS Luminy Case 907 13288 Marseille Cedex 9 France E-mail: