The Annals of Applied Probability

Exact Convergence Rates For The Distribution of Particles in Branching Random Walks

Xia Chen

Full-text: Open access


The exact convergence rates of the particle distributions in supercritical branching random walks and supercritical branching Wiener processes are obtained and a conjecture of Révész is confirmed.

Article information

Ann. Appl. Probab., Volume 11, Number 4 (2001), 1242-1262.

First available in Project Euclid: 5 March 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems 60I15 60F25: $L^p$-limit theorems

Supercritical branching random walk supercritical branching Wiener process local limit theorem central limit theorem


Chen, Xia. Exact Convergence Rates For The Distribution of Particles in Branching Random Walks. Ann. Appl. Probab. 11 (2001), no. 4, 1242--1262. doi:10.1214/aoap/1015345402.

Export citation


  • Athreya, K. B. and Kaplan, N. (1978). The additive property and its application in branching processes. Adv. in Appl. Probab. 5 27-60.
  • Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, Berlin.
  • Biggins, J. D. (1990). The central limit theorem for the supercritical branching random walk, and related results. Stochastic Process. Appl. 34 255-274.
  • Bramson, M., Ney, P. E. and Tao, J. (1992). The population composition of a multitype branching random walk. Ann. Appl. Probab. 2 575-596.
  • Dembo, A. and Zeitouni, O. (1992). Large Deviations Techniques and Applications. Jones & Bartlett, Boston.
  • Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, NewYork.
  • Harris, T. E. (1963). The Theory of Branching Processes. Springer, Berlin.
  • Joffe, A. (1987). Diffusion approximation of multitype branching processes. In Probability Theory and Mathematical Statistics 2 31-36. VNU Science Press, Utrecht.
  • Klebaner, C. F. (1982). Branching random walk in varying environments. Adv. in Appl. Probab. 14 359-367.
  • Kolmogorov, A. N. (1941). ¨Uber das logarithmisch normale Vertilungsgesetz der Dimensionen der Teilchen bei Zerst ¨uckelung. Doklady 31 99-101.
  • Lawler, G. (1991). Intersections of Random Walks. Birkh¨auser, Boston.
  • Ney, P. E. (1991). Branching random walks. In Spatial Stochastic Process (K. S. Alexander and J. C. Watkins, eds.) Birkh¨auser, Boston. 3-22.
  • Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, Berlin.
  • R´ev´esz, P. (1994). Random Walks of Infinitely Many Particles. World Scientific, Singapore.
  • Stam, A. J. (1966). On a conjecture of Harris. Z. Wahrsch. Verw. Gebiete. 5 202-206.
  • Watanabe, S. (1965). On the branching process for Brownian particles with an absorbing boundary. J. Math. Kyoto Univ. 4 185-198.