Algebra & Number Theory

Stark systems over Gorenstein local rings

Ryotaro Sakamoto

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper, we define a Stark system over a complete Gorenstein local ring with a finite residue field. Under some standard assumptions, we show that the module of Stark systems is free of rank 1 and that these systems control all the higher Fitting ideals of the Pontryagin dual of the dual Selmer group. This is a generalization of the theory, developed by B. Mazur and K. Rubin, on Stark (or Kolyvagin) systems over principal ideal local rings. Applying our result to a certain Selmer structure over the cyclotomic Iwasawa algebra, we propose a new method for controlling Selmer groups using Euler systems.

Article information

Algebra Number Theory, Volume 12, Number 10 (2018), 2295-2326.

Received: 19 April 2017
Revised: 26 February 2018
Accepted: 23 August 2018
First available in Project Euclid: 14 February 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11R23: Iwasawa theory
Secondary: 11F80: Galois representations 11S25: Galois cohomology [See also 12Gxx, 16H05]

Stark systems Euler systems Selmer groups Iwasawa theory


Sakamoto, Ryotaro. Stark systems over Gorenstein local rings. Algebra Number Theory 12 (2018), no. 10, 2295--2326. doi:10.2140/ant.2018.12.2295.

Export citation


  • D. Burns and T. Sano, “On the theory of higher rank Euler, Kolyvagin and Stark systems”, preprint, 2016.
  • D. Burns, M. Kurihara, and T. Sano, “On Stark elements of arbitrary weight and their $p$-adic families”, preprint, 2016.
  • K. Büyükboduk, “Stark units and the main conjectures for totally real fields”, Compos. Math. 145:5 (2009), 1163–1195.
  • K. Büyükboduk, “$\Lambda$-adic Kolyvagin systems”, Int. Math. Res. Not. 2011:14 (2011), 3141–3206.
  • K. Büyükboduk, “Main conjectures for CM fields and a Yager-type theorem for Rubin–Stark elements”, Int. Math. Res. Not. 2014:21 (2014), 5832–5873.
  • K. Büyükboduk, “Deformations of Kolyvagin systems”, Ann. Math. Qué. 40:2 (2016), 251–302.
  • K. Büyükboduk, “On the Iwasawa theory of CM fields for supersingular primes”, Trans. Amer. Math. Soc. 370:2 (2018), 927–966.
  • K. Büyükboduk and A. Lei, “Coleman-adapted Rubin–Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties”, Proc. Lond. Math. Soc. $(3)$ 111:6 (2015), 1338–1378.
  • B. Mazur and K. Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 799, 2004.
  • B. Mazur and K. Rubin, “Controlling Selmer groups in the higher core rank case”, J. Théor. Nombres Bordeaux 28:1 (2016), 145–183.
  • J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der Math. Wissenschaften 323, Springer, 2008.
  • B. Perrin-Riou, “Théorie d'Iwasawa et hauteurs $p$-adiques”, Invent. Math. 109:1 (1992), 137–185.
  • B. Perrin-Riou, $p$-adic $L$-functions and $p$-adic representations, SMF/AMS Texts and Monographs 3, Amer. Math. Soc., Providence, RI, 2000.
  • K. Rubin, Euler systems, Ann. Math. Studies 147, Princeton Univ. Press, 2000.
  • T. Sano, “A generalization of Darmon's conjecture for Euler systems for general $p$-adic representations”, J. Number Theory 144 (2014), 281–324.