Algebra & Number Theory

Dynamics on abelian varieties in positive characteristic

Jakub Byszewski and Gunther Cornelissen

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study periodic points and orbit length distribution for endomorphisms of abelian varieties in characteristic p>0. We study rationality, algebraicity and the natural boundary property for the dynamical zeta function (the latter using a general result on power series proven by Royals and Ward in the appendix), as well as analogues of the prime number theorem, also for tame dynamics, ignoring orbits whose order is divisible by p. The behavior is governed by whether or not the action on the local p-torsion group scheme is nilpotent.

Article information

Source
Algebra Number Theory, Volume 12, Number 9 (2018), 2185-2235.

Dates
Received: 30 March 2018
Revised: 29 June 2018
Accepted: 29 July 2018
First available in Project Euclid: 5 January 2019

Permanent link to this document
https://projecteuclid.org/euclid.ant/1546657279

Digital Object Identifier
doi:10.2140/ant.2018.12.2185

Mathematical Reviews number (MathSciNet)
MR3894433

Zentralblatt MATH identifier
06999507

Subjects
Primary: 37P55: Arithmetic dynamics on general algebraic varieties
Secondary: 11N45: Asymptotic results on counting functions for algebraic and topological structures 14G17: Positive characteristic ground fields 14K02: Isogeny 37C25: Fixed points, periodic points, fixed-point index theory 37C30: Zeta functions, (Ruelle-Frobenius) transfer operators, and other functional analytic techniques in dynamical systems

Keywords
abelian variety inseparability fixed points Artin–Mazur zeta function recurrence sequence natural boundary

Citation

Byszewski, Jakub; Cornelissen, Gunther. Dynamics on abelian varieties in positive characteristic. Algebra Number Theory 12 (2018), no. 9, 2185--2235. doi:10.2140/ant.2018.12.2185. https://projecteuclid.org/euclid.ant/1546657279


Export citation

References

  • M. Artin and B. Mazur, “On periodic points”, Ann. of Math. $(2)$ 81 (1965), 82–99.
  • M. Baake, E. Lau, and V. Paskunas, “A note on the dynamical zeta function of general toral endomorphisms”, Monatsh. Math. 161:1 (2010), 33–42.
  • J. P. Bell and S. Gerhold, “On the positivity set of a linear recurrence sequence”, Israel J. Math. 157 (2007), 333–345.
  • J. P. Bell, M. Coons, and E. Rowland, “The rational-transcendental dichotomy of Mahler functions”, J. Integer Seq. 16:2 (2013), Article 13.2.10, 11.
  • J. Bell, R. Miles, and T. Ward, “Towards a Pólya–Carlson dichotomy for algebraic dynamics”, Indag. Math. $($N.S.$)$ 25:4 (2014), 652–668.
  • A. Bellagh and J.-P. Bézivin, “Quotients de suites holonomes”, Ann. Fac. Sci. Toulouse Math. $(6)$ 20:1 (2011), 135–166.
  • G. Benettin, A. Carati, L. Galgani, and A. Giorgilli, “The Fermi–Pasta–Ulam problem and the metastability perspective”, pp. 152–189 in The Fermi–Pasta–Ulam problem, edited by G. Gallavotti, Lecture Notes in Phys. 728, Springer, 2008.
  • A. Bridy, “Transcendence of the Artin–Mazur zeta function for polynomial maps of $\mathbb A^1(\overline{\Bbb F}_p)$”, Acta Arith. 156:3 (2012), 293–300.
  • A. Bridy, “The Artin–Mazur zeta function of a dynamically affine rational map in positive characteristic”, J. Théor. Nombres Bordeaux 28:2 (2016), 301–324.
  • M. Deuring, “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272.
  • V. Dimitrov, “A note on a generalization of the Hadamard quotient theorem”, 2013.
  • B. Dwork, “On the rationality of the zeta function of an algebraic variety”, Amer. J. Math. 82 (1960), 631–648.
  • G. Everest, V. Stangoe, and T. Ward, “Orbit counting with an isometric direction”, pp. 293–302 in Algebraic and topological dynamics, edited by S. Kolyada et al., Contemp. Math. 385, Amer. Math. Soc., Providence, RI, 2005.
  • G. Everest, R. Miles, S. Stevens, and T. Ward, “Orbit-counting in non-hyperbolic dynamical systems”, J. Reine Angew. Math. 608 (2007), 155–182.
  • P. Flajolet, S. Gerhold, and B. Salvy, “On the non-holonomic character of logarithms, powers, and the $n$th prime function”, Electron. J. Combin. 11:2 (2004/06), Article 2, 16.
  • D. Freeman and K. Lauter, “Computing endomorphism rings of Jacobians of genus 2 curves over finite fields”, pp. 29–66 in Algebraic geometry and its applications, edited by J. Chaumine et al., Ser. Number Theory Appl. 5, World Sci. Publ., Hackensack, NJ, 2008.
  • S. Friedland, “Entropy of polynomial and rational maps”, Ann. of Math. $(2)$ 133:2 (1991), 359–368.
  • A. O. Gelrime fond, Transcendental and algebraic numbers, Dover Publications, New York, 1960.
  • E. Z. Goren, Lectures on Hilbert modular varieties and modular forms, CRM Monograph Series 14, American Mathematical Society, Providence, RI, 2002.
  • N. Grieve, “Reduced norms and the Riemann–Roch theorem for Abelian varieties”, New York J. Math. 23 (2017), 1087–1110.
  • A. Grothendieck, “Formule de Lefschetz et rationalité des fonctions $L$”, in Séminaire Bourbaki $1964/1965$ (Exposé 279), W. A. Benjamin, Amsterdam, 1965. Reprinted as pp. 41–55 in Séminaire Bourbaki 9, Soc. Math. France, Paris, 1995.
  • W. A. Harris, Jr. and Y. Sibuya, “The reciprocals of solutions of linear ordinary differential equations”, Adv. in Math. 58:2 (1985), 119–132.
  • A. Hinkkanen, “Zeta functions of rational functions are rational”, Ann. Acad. Sci. Fenn. Ser. A I Math. 19:1 (1994), 3–10.
  • G. Knieper, “On the asymptotic geometry of nonpositively curved manifolds”, Geom. Funct. Anal. 7:4 (1997), 755–782.
  • T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics 131, Springer, 1991.
  • LMFDB Collaboration, “The $L$-functions and modular forms database”, electronic reference, 2013, http://www.lmfdb.org. Home page of the abelian variety isogeny class $\rm 2.5.a_a$ over $\mathbb{F}_5$.
  • J. S. Milne, “Abelian Varieties (v2.00)”, 2008, http://www.jmilne.org/math/.
  • J. S. Milne, “Lectures on etale cohomology (v2.21)”, 2013, www.jmilne.org/math.
  • D. Mumford, Abelian varieties, 2nd ed., Tata Institute of Fundamental Research Studies in Mathematics 5, Tata Institute of Fundamental Research, Bombay, 2008.
  • P. Norman and F. Oort, “Moduli of abelian varieties”, Ann. of Math. $(2)$ 112:3 (1980), 413–439.
  • W. Parry and M. Pollicott, “An analogue of the prime number theorem for closed orbits of Axiom A flows”, Ann. of Math. $(2)$ 118:3 (1983), 573–591.
  • M. Pollicott and R. Sharp, “Exponential error terms for growth functions on negatively curved surfaces”, Amer. J. Math. 120:5 (1998), 1019–1042.
  • A. J. van der Poorten, “Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles”, C. R. Acad. Sci. Paris Sér. I Math. 306:3 (1988), 97–102.
  • M. Rosen, Number theory in function fields, Graduate Texts in Mathematics 210, Springer, 2002.
  • R. Royals, Arithmetic and dynamical systems, Ph.D. thesis, University of East Anglia, 2015, https://ueaeprints.uea.ac.uk/57191.
  • R. Rumely, “Notes on van der Poorten's proof of the Hadamard quotient theorem, I, II”, pp. 349–382, 383–409 in Séminaire de Théorie des Nombres, Paris 1986–87, edited by C. Goldstein, Progr. Math. 75, Birkhäuser Boston, Boston, 1988.
  • The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.0), Sage Development Team, 2016, http://www.sagemath.org.
  • S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc. 73 (1967), 747–817.
  • R. P. Stanley, “Differentiably finite power series”, European J. Combin. 1:2 (1980), 175–188.
  • R. P. Stanley, Enumerative combinatorics, Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics 49, Cambridge University Press, 2012.
  • W. C. Waterhouse, “Abelian varieties over finite fields”, Ann. Sci. École Norm. Sup. $(4)$ 2 (1969), 521–560.