Algebra & Number Theory

Microlocal lifts and quantum unique ergodicity on $GL_2(\mathbb{Q}_p)$

Paul D. Nelson

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove that arithmetic quantum unique ergodicity holds on compact arithmetic quotients of GL2(p) for automorphic forms belonging to the principal series. We interpret this conclusion in terms of the equidistribution of eigenfunctions on covers of a fixed regular graph or along nested sequences of regular graphs.

Our results are the first of their kind on any p-adic arithmetic quotient. They may be understood as analogues of Lindenstrauss’s theorem on the equidistribution of Maass forms on a compact arithmetic surface. The new ingredients here include the introduction of a representation-theoretic notion of “p-adic microlocal lifts” with favorable properties, such as diagonal invariance of limit measures; the proof of positive entropy of limit measures in a p-adic aspect, following the method of Bourgain–Lindenstrauss; and some analysis of local Rankin–Selberg integrals involving the microlocal lifts introduced here as well as classical newvectors. An important input is a measure-classification result of Einsiedler–Lindenstrauss.

Article information

Source
Algebra Number Theory, Volume 12, Number 9 (2018), 2033-2064.

Dates
Received: 26 January 2017
Revised: 9 April 2018
Accepted: 15 July 2018
First available in Project Euclid: 5 January 2019

Permanent link to this document
https://projecteuclid.org/euclid.ant/1546657274

Digital Object Identifier
doi:10.2140/ant.2018.12.2033

Mathematical Reviews number (MathSciNet)
MR3894428

Subjects
Primary: 58J51: Relations between spectral theory and ergodic theory, e.g. quantum unique ergodicity
Secondary: 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05] 37A45: Relations with number theory and harmonic analysis [See also 11Kxx]

Keywords
arithmetic quantum unique ergodicity microlocal lifts representation theory

Citation

Nelson, Paul D. Microlocal lifts and quantum unique ergodicity on $GL_2(\mathbb{Q}_p)$. Algebra Number Theory 12 (2018), no. 9, 2033--2064. doi:10.2140/ant.2018.12.2033. https://projecteuclid.org/euclid.ant/1546657274


Export citation

References

  • N. Anantharaman and E. Le Masson, “Quantum ergodicity on large regular graphs”, Duke Math. J. 164:4 (2015), 723–765.
  • A. O. L. Atkin and J. Lehner, “Hecke operators on $\Gamma \sb{0}(m)$”, Math. Ann. 185 (1970), 134–160.
  • J. Bourgain and E. Lindenstrauss, “Entropy of quantum limits”, Comm. Math. Phys. 233:1 (2003), 153–171.
  • H. Brandt, “Zur Zahlentheorie der Quaternionen”, Jber. Deutsch. Math. Verein. 53 (1943), 23–57.
  • S. Brooks and E. Lindenstrauss, “Graph eigenfunctions and quantum unique ergodicity”, C. R. Math. Acad. Sci. Paris 348:15-16 (2010), 829–834.
  • S. Brooks and E. Lindenstrauss, “Non-localization of eigenfunctions on large regular graphs”, Israel J. Math. 193:1 (2013), 1–14.
  • S. Brooks and E. Lindenstrauss, “Joint quasimodes, positive entropy, and quantum unique ergodicity”, Invent. Math. 198:1 (2014), 219–259.
  • D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics 55, Cambridge University Press, 1997.
  • W. Casselman, “On some results of Atkin and Lehner”, Math. Ann. 201 (1973), 301–314.
  • W. Casselman, “The restriction of a representation of ${\rm GL}_2(k)$ to ${\rm GL}_{2}({\mathfrak{o}})$”, Math. Ann. 206 (1973), 311–318.
  • M. Eichler, “Zur Zahlentheorie der Quaternionen-Algebren”, J. Reine Angew. Math. 195 (1955), 127–151.
  • M. Einsiedler and E. Lindenstrauss, “On measures invariant under diagonalizable actions: the rank-one case and the general low-entropy method”, J. Mod. Dyn. 2:1 (2008), 83–128.
  • B. H. Gross, “Heights and the special values of $L$-series”, pp. 115–187 in Number theory (Montreal, Quebec, 1985), edited by H. Kisilevsky and J. Labute, CMS Conf. Proc. 7, Amer. Math. Soc., Providence, RI, 1987.
  • R. Holowinsky and K. Soundararajan, “Mass equidistribution for Hecke eigenforms”, Ann. of Math. $($2$)$ 172:2 (2010), 1517–1528.
  • Y. Hu, “Triple product formula and mass equidistribution on modular curves of level $N$”, Int. Math. Res. Not. 2018:9 (2018), 2899–2943.
  • A. Ichino, “Trilinear forms and the central values of triple product $L$-functions”, Duke Math. J. 145:2 (2008), 281–307.
  • A. Ichino and T. Ikeda, “On the periods of automorphic forms on special orthogonal groups and the Gross–Prasad conjecture”, Geom. Funct. Anal. 19:5 (2010), 1378–1425.
  • A. W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series 36, Princeton University Press, 1986.
  • M. Kneser, “Strong approximation”, pp. 187–196 in Algebraic Groups and Discontinuous Subgroups (Boulder, Colorado, 1965), edited by A. Borel and G. D. Mostow, Proc. Sympos. Pure Math. 9, Amer. Math. Soc., Providence, RI, 1966.
  • E. Le Masson, “Pseudo-differential calculus on homogeneous trees”, Ann. Henri Poincaré 15:9 (2014), 1697–1732.
  • E. Le Masson and T. Sahlsten, “Quantum ergodicity and Benjamini–Schramm convergence of hyperbolic surfaces”, Duke Math. J. 166:18 (2017), 3425–3460.
  • E. Lindenstrauss, “On quantum unique ergodicity for $\Gamma\backslash\mathbb H\times\mathbb{H}$”, Internat. Math. Res. Notices 17 (2001), 913–933.
  • E. Lindenstrauss, “Adelic dynamics and arithmetic quantum unique ergodicity”, pp. 111–139 in Current developments in mathematics, 2004, edited by D. Jerison et al., Int. Press, Somerville, MA, 2006.
  • E. Lindenstrauss, “Invariant measures and arithmetic quantum unique ergodicity”, Ann. of Math. $($2$)$ 163:1 (2006), 165–219.
  • A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs”, Combinatorica 8:3 (1988), 261–277.
  • W. Luo and P. Sarnak, “Mass equidistribution for Hecke eigenforms”, Comm. Pure Appl. Math. 56:7 (2003), 874–891.
  • P. Michel and A. Venkatesh, “The subconvexity problem for ${\rm GL}_2$”, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171–271.
  • P. D. Nelson, “Equidistribution of cusp forms in the level aspect”, Duke Math. J. 160:3 (2011), 467–501.
  • P. D. Nelson, “Mass equidistribution of Hilbert modular eigenforms”, Ramanujan J. 27:2 (2012), 235–284.
  • P. D. Nelson, “Evaluating modular forms on Shimura curves”, Math. Comp. 84:295 (2015), 2471–2503.
  • P. D. Nelson, “Quantum variance on quaternion algebras, I”, preprint, 2016.
  • P. D. Nelson, “Analytic isolation of newforms of given level”, Arch. Math. $($Basel$)$ 108:6 (2017), 555–568.
  • P. D. Nelson, A. Pitale, and A. Saha, “Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels”, J. Amer. Math. Soc. 27:1 (2014), 147–191.
  • P. D. Nelson, A. Saha, and Y. Hu, “Some analytic aspects of automorphic forms on ${\rm GL}(2)$ of minimal type”, To appear in Comm. Math. Helv.
  • I. Piatetski-Shapiro and S. Rallis, “Rankin triple $L$ functions”, Compositio Math. 64:1 (1987), 31–115.
  • A. Pizer, “An algorithm for computing modular forms on $\Gamma_{0}(N)$”, J. Algebra 64:2 (1980), 340–390.
  • D. Prasad, “Trilinear forms for representations of ${\rm GL}(2)$ and local $\epsilon$-factors”, Compositio Math. 75:1 (1990), 1–46.
  • A. Reznikov, “Laplace–Beltrami operator on a Riemann surface and equidistribution of measures”, Comm. Math. Phys. 222:2 (2001), 249–267.
  • Z. Rudnick and P. Sarnak, “The behaviour of eigenstates of arithmetic hyperbolic manifolds”, Comm. Math. Phys. 161:1 (1994), 195–213.
  • W. A. Stein et al., “Sage Mathematics Software”, 2015, http://www.sagemath.org. Version 6.7.
  • P. Sarnak, “Recent progress on the quantum unique ergodicity conjecture”, Bull. Amer. Math. Soc. $($N.S.$)$ 48:2 (2011), 211–228.
  • R. Schmidt, “Some remarks on local newforms for $\rm GL(2)$”, J. Ramanujan Math. Soc. 17:2 (2002), 115–147.
  • J.-P. Serre, Trees, Springer, Berlin, 2003.
  • L. Silberman and A. Venkatesh, “On quantum unique ergodicity for locally symmetric spaces”, Geom. Funct. Anal. 17:3 (2007), 960–998.
  • L. Silberman and A. Venkatesh, “Quantum unique ergodicity for locally symmetric spaces II”, http://www.math.ubc.ca/~lior/work/AQUE-nov6.pdf.
  • K. Soundararajan, “Weak subconvexity for central values of $L$-functions”, Ann. of Math. $($2$)$ 172:2 (2010), 1469–1498.
  • N. Templier, “Large values of modular forms”, Camb. J. Math. 2:1 (2014), 91–116.
  • A. Venkatesh, “Sparse equidistribution problems, period bounds and subconvexity”, Ann. of Math. $($2$)$ 172:2 (2010), 989–1094.
  • M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics 800, Springer, Berlin, 1980.
  • J. Voight, “Quaternion algebras”, Dartmouth College, 2018, https://math.dartmouth.edu/~jvoight/quat.html.
  • S. A. Wolpert, “The modulus of continuity for $\Gamma_0(m)\backslash{\mathbb H}$ semi-classical limits”, Comm. Math. Phys. 216:2 (2001), 313–323.
  • S. Zelditch, “Uniform distribution of eigenfunctions on compact hyperbolic surfaces”, Duke Math. J. 55:4 (1987), 919–941.
  • S. Zelditch, “On a “quantum chaos” theorem of R. Schrader and M. Taylor”, J. Funct. Anal. 109:1 (1992), 1–21.