## Algebra & Number Theory

### Characterization of Kollár surfaces

#### Abstract

Kollár (2008) introduced the surfaces

$( x 1 a 1 x 2 + x 2 a 2 x 3 + x 3 a 3 x 4 + x 4 a 4 x 1 = 0 ) ⊂ P ( w 1 , w 2 , w 3 , w 4 )$

where $w i = W i ∕ w ∗$, $W i = a i + 1 a i + 2 a i + 3 − a i + 2 a i + 3 + a i + 3 − 1$, and $w ∗ = gcd ( W 1 , … , W 4 )$. The aim was to give many interesting examples of $ℚ$-homology projective planes. They occur when $w ∗ = 1$. For that case, we prove that Kollár surfaces are Hwang–Keum (2012) surfaces. For $w ∗ > 1$, we construct a geometrically explicit birational map between Kollár surfaces and cyclic covers $z w ∗ = l 1 a 2 a 3 a 4 l 2 − a 3 a 4 l 3 a 4 l 4 − 1$, where ${ l 1 , l 2 , l 3 , l 4 }$ are four general lines in $P 2$. In addition, by using various properties on classical Dedekind sums, we prove that:

1. For any $w ∗ > 1$, we have $p g = 0$ if and only if the Kollár surface is rational. This happens when $a i + 1 ≡ 1$ or $a i a i + 1 ≡ − 1 ( mod w ∗ )$ for some $i$.
2. For any $w ∗ > 1$, we have $p g = 1$ if and only if the Kollár surface is birational to a K3 surface. We classify this situation.
3. For $w ∗ ≫ 0$, we have that the smooth minimal model $S$ of a generic Kollár surface is of general type with $K S 2 ∕ e ( S ) → 1$.

#### Article information

Source
Algebra Number Theory, Volume 12, Number 5 (2018), 1073-1105.

Dates
Revised: 29 January 2018
Accepted: 17 March 2018
First available in Project Euclid: 14 August 2018

https://projecteuclid.org/euclid.ant/1534212097

Digital Object Identifier
doi:10.2140/ant.2018.12.1073

Mathematical Reviews number (MathSciNet)
MR3840871

Zentralblatt MATH identifier
06921170

Subjects
Primary: 14J10: Families, moduli, classification: algebraic theory

#### Citation

Urzúa, Giancarlo; Yáñez, José Ignacio. Characterization of Kollár surfaces. Algebra Number Theory 12 (2018), no. 5, 1073--1105. doi:10.2140/ant.2018.12.1073. https://projecteuclid.org/euclid.ant/1534212097

#### References

• P. Barkan, “Sur les sommes de Dedekind et les fractions continues finies”, C. R. Acad. Sci. Paris Sér. A-B 284:16 (1977), A923–A926.
• W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 4, Springer, 2004.
• I. Dolgachev, “Weighted projective varieties”, pp. 34–71 in Group actions and vector fields (Vancouver, 1981), edited by J. B. Carrell, Lecture Notes in Mathematics 956, Springer, 1982.
• H. Esnault and E. Viehweg, Lectures on vanishing theorems, DMV Seminar 20, Birkhäuser, 1992.
• K. Girstmair, “The largest values of Dedekind sums”, Int. J. Number Theory 13:6 (2017), 1579–1583.
• G. Gonzalez-Sprinberg and M. Lejeune-Jalabert, “Families of smooth curves on surface singularities and wedges”, Ann. Polon. Math. 67:2 (1997), 179–190.
• F. Hirzebruch and D. Zagier, The Atiyah–Singer theorem and elementary number theory, Mathematics Lecture Series 3, Publish or Perish, 1974.
• D. Hwang and J. Keum, “Construction of singular rational surfaces of Picard number one with ample canonical divisor”, Proc. Amer. Math. Soc. 140:6 (2012), 1865–1879.
• A. R. Iano-Fletcher, “Working with weighted complete intersections”, pp. 101–173 in Explicit birational geometry of 3-folds, edited by A. Corti and M. Reid, London Mathematical Society Lecture Note Series 281, Cambridge University, 2000.
• J. Kollár, “Is there a topological Bogomolov–Miyaoka–Yau inequality?”, Pure Appl. Math. Q. 4:2 (2008), 203–236.
• M. Reid, “Surface cyclic quotient singularities and Hirzebruch–Jung resolutions”, preprint, 2003, http://homepages.warwick.ac.uk/~masda/surf/more/cyclic.pdf.
• G. Urzúa, “Arrangements of curves and algebraic surfaces”, J. Algebraic Geom. 19:2 (2010), 335–365.
• G. Urzúa, “Chern slopes of surfaces of general type in positive characteristic”, Duke Math. J. 166:5 (2017), 975–1004.