Algebra & Number Theory

Certain abelian varieties bad at only one prime

Armand Brumer and Kenneth Kramer

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

An abelian surface A of prime conductor N is favorable if its 2-division field F is an S 5 -extension over with ramification index 5 over 2 . Let A be favorable and let B be a semistable abelian variety of dimension 2 d and conductor N d with B [ 2 ] filtered by copies of A [ 2 ] . We give a sufficient class field theoretic criterion on F to guarantee that B is isogenous to A d .

As expected from our paramodular conjecture, we conclude that there is one isogeny class of abelian surfaces for each conductor in { 2 7 7 , 3 4 9 , 4 6 1 , 7 9 7 , 9 7 1 } . The general applicability of our criterion is discussed in the data section.

Article information

Source
Algebra Number Theory, Volume 12, Number 5 (2018), 1027-1071.

Dates
Received: 1 September 2016
Revised: 20 August 2017
Accepted: 23 October 2017
First available in Project Euclid: 14 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.ant/1534212096

Digital Object Identifier
doi:10.2140/ant.2018.12.1027

Mathematical Reviews number (MathSciNet)
MR3840870

Zentralblatt MATH identifier
1404.11083

Subjects
Primary: 11G10: Abelian varieties of dimension > 1 [See also 14Kxx]
Secondary: 11R37: Class field theory 11S31: Class field theory; $p$-adic formal groups [See also 14L05] 14K15: Arithmetic ground fields [See also 11Dxx, 11Fxx, 11G10, 14Gxx]

Keywords
semistable abelian variety group scheme Honda system conductor paramodular conjecture

Citation

Brumer, Armand; Kramer, Kenneth. Certain abelian varieties bad at only one prime. Algebra Number Theory 12 (2018), no. 5, 1027--1071. doi:10.2140/ant.2018.12.1027. https://projecteuclid.org/euclid.ant/1534212096


Export citation

References

  • V. A. Abrashkin, “Galois modules of group schemes of period $p$ over the ring of Witt vectors”, Izv. Akad. Nauk SSSR Ser. Mat. 51:4 (1987), 691–736, 910. In Russian; translated in Izvestiya Math. 31:4 (1988), 1–46.
  • T. Berger, L. Dembélé, A. Pacetti, and M. H. \c Sengün, “Theta lifts of Bianchi modular forms and applications to paramodularity”, J. Lond. Math. Soc. $(2)$ 92:2 (2015), 353–370.
  • P. Berthelot, “Systèmes de Honda des schémas en $F\sb{q}$-vectoriels”, Bull. Soc. Math. France 105:3 (1977), 225–239.
  • W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system, I: The user language”, J. Symbolic Comput. 24:3-4 (1997), 235–265.
  • O. Brinon and B. Conrad, “CMI summer school notes on $p$-adic Hodge Theory”, lecture notes, Stanford Univerisy, 2009, http://math.stanford.edu/~conrad/papers/notes.pdf.
  • A. Brumer and K. Kramer, “Non-existence of certain semistable abelian varieties”, Manuscripta Math. 106:3 (2001), 291–304.
  • A. Brumer and K. Kramer, “Semistable abelian varieties with small division fields”, pp. 13–37 in Galois theory and modular forms, edited by K.-i. Hashimoto et al., Dev. Math. 11, Kluwer Acad. Publ., Boston, MA, 2004.
  • A. Brumer and K. Kramer, “Arithmetic of division fields”, Proc. Amer. Math. Soc. 140:9 (2012), 2981–2995.
  • A. Brumer and K. Kramer, “Paramodular abelian varieties of odd conductor”, Trans. Amer. Math. Soc. 366:5 (2014), 2463–2516.
  • A. Brumer and K. Kramer, “Large 2-adic Galois image and non-existence of certain abelian surfaces over $\mathbb{Q}$”, Acta Arith. 183:4 (2018), 357–383.
  • A. Brumer and O. McGuinness, “310716 elliptic curves of prime conductor”, electronic reference, 1990, http://www.math.columbia.edu/~om/.
  • F. Calegari, “Semistable abelian varieties over $\mathbb Q$”, Manuscripta Math. 113:4 (2004), 507–529.
  • B. Conrad, “Finite group schemes over bases with low ramification”, Compositio Math. 119:3 (1999), 239–320.
  • S. Eilenberg and S. MacLane, “Group extensions and homology”, Ann. of Math. $(2)$ 43 (1942), 757–831.
  • G. Faltings, “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math. 73:3 (1983), 349–366.
  • J.-M. Fontaine, “Groupes finis commutatifs sur les vecteurs de Witt”, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), Ai, A1423–A1425.
  • J.-M. Fontaine, “Groupes $p$-divisibles sur les vecteurs de Witt”, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), Ai, A1353–A1356.
  • J.-M. Fontaine, Groupes $p$-divisibles sur les corps locaux, Société Mathématique de France, Paris, 1977. Astérisque, No. 47-48.
  • J.-M. Fontaine, “Il n'y a pas de variété abélienne sur ${\bf Z}$”, Invent. Math. 81:3 (1985), 515–538.
  • A. Grothendieck and M. Raynaud, Modeles de neron et monodromie, pp. 313–523, Springer, Berlin, Heidelberg, 1972.
  • J. Johnson-Leung and B. Roberts, “Siegel modular forms of degree two attached to Hilbert modular forms”, J. Number Theory 132:4 (2012), 543–564.
  • J. Johnson-Leung and B. Roberts, “Twisting of Siegel paramodular forms”, Int. J. Number Theory 13:7 (2017), 1755–1854.
  • G. Kemper and G. Malle, “The finite irreducible linear groups with polynomial ring of invariants”, Transform. Groups 2:1 (1997), 57–89.
  • S. Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics 110, Springer, 1994.
  • S. Mac Lane, Homology, Grundlehren der math. Wissenschaften 114, Springer, Berlin, 1963.
  • B. Mazur, “Modular curves and the Eisenstein ideal”, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186.
  • J. R. Merriman and N. P. Smart, “Curves of genus $2$ with good reduction away from $2$ with a rational Weierstrass point”, Math. Proc. Cambridge Philos. Soc. 114:2 (1993), 203–214.
  • J. S. Milne, “On the arithmetic of abelian varieties”, Invent. Math. 17 (1972), 177–190.
  • P. Ploner, “Computation of framed deformation functors”, J. Number Theory 156 (2015), 21–37.
  • C. Poor and D. S. Yuen, “Paramodular cusp forms”, Math. Comp. 84:293 (2015), 1401–1438.
  • M. Raynaud, “Schémas en groupes de type $(p,\dots, p)$”, Bull. Soc. Math. France 102 (1974), 241–280.
  • R. Schoof, “Abelian varieties over cyclotomic fields with good reduction everywhere”, Math. Ann. 325:3 (2003), 413–448.
  • R. Schoof, “Abelian varieties over $\mathbb Q$ with bad reduction in one prime only”, Compos. Math. 141:4 (2005), 847–868.
  • R. Schoof, “On the modular curve $X_0(23)$”, pp. 317–345 in Geometry and arithmetic, edited by C. Faber et al., Eur. Math. Soc., Zürich, Switzerland, 2012.
  • R. Schoof, “Semistable abelian varieties with good reduction outside 15”, Manuscripta Math. 139:1-2 (2012), 49–70.
  • J.-P. Serre, Local fields, Graduate Texts in Mathematics 67, Springer, 1979.
  • B. Setzer, “Elliptic curves with good reduction everywhere over quadratic fields and having rational $j$-invariant”, Illinois J. Math. 25:2 (1981), 233–245.
  • G. Shimura, “Class fields over real quadratic fields and Hecke operators”, Ann. of Math. $(2)$ 95 (1972), 130–190.
  • N. P. Smart, “$S$-unit equations, binary forms and curves of genus $2$”, Proc. London Math. Soc. $(3)$ 75:2 (1997), 271–307.
  • J. Tate, “Finite flat group schemes”, pp. 121–154 in Modular forms and Fermat's last theorem (Boston, MA, 1995), edited by G. Cornell et al., Springer, New York, 1997.