Algebra & Number Theory

A pencil of Enriques surfaces of index one with no section

Jason Starr

Full-text: Open access

Abstract

Monodromy arguments and deformation-and-specialization are used to prove existence of a pencil of Enriques surfaces with no section and index 1. The same technique “completes” the strategy from Graber et al. (2005) proving that the family of witness curves for dimension d depends on the integer d.

Article information

Source
Algebra Number Theory, Volume 3, Number 6 (2009), 637-652.

Dates
Received: 25 September 2008
Revised: 13 July 2009
Accepted: 14 July 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513797468

Digital Object Identifier
doi:10.2140/ant.2009.3.637

Mathematical Reviews number (MathSciNet)
MR2579389

Zentralblatt MATH identifier
1190.14035

Subjects
Primary: 14G05: Rational points
Secondary: 14D06: Fibrations, degenerations

Keywords
rational point Enriques surface

Citation

Starr, Jason. A pencil of Enriques surfaces of index one with no section. Algebra Number Theory 3 (2009), no. 6, 637--652. doi:10.2140/ant.2009.3.637. https://projecteuclid.org/euclid.ant/1513797468


Export citation

References

  • P. Colmez and J.-P. Serre (editors), Correspondance Grothendieck–Serre, Documents Mathématiques 2, Société Mathématique de France, Paris, 2001.
  • P. Deligne and N. Katz (editors), Groupes de monodromie en géométrie algébrique, II: Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Lecture Notes in Math. 340, Springer, Berlin, 1973.
  • T. Graber, J. Harris, B. Mazur, and J. Starr, “Rational connectivity and sections of families over curves”, Ann. Sci. École Norm. Sup. $(4)$ 38:5 (2005), 671–692.
  • A. Grothendieck, “Techniques de construction et théorèmes d'existence en géométrie algébrique, IV: Les schémas de Hilbert”, in Séminaire Bourbaki 1960/61 (Exposé 221), 1961. Reprinted as part IV in Fondements de la géométrie algébrique, Secrétariat mathématique, Paris, 1962.
  • A. Grothendieck, Revêtements étales et groupe fondamental: Séminaire de géométrie algébrique du Bois Marie 1960–61 (SGA 1), Lecture Notes in Math. 224, Springer, Berlin, 1962. Reprinted Soc. math. de France, Paris, 2003.
  • G. Lafon, “Une surface d'Enriques sans point sur ${\mathbb C}((t))$”, C. R. Math. Acad. Sci. Paris 338:1 (2004), 51–54.