Algebra & Number Theory

Dress induction and the Burnside quotient Green ring

Ian Hambleton, Laurence Taylor, and Bruce Williams

Full-text: Open access

Abstract

We define and study the Burnside quotient Green ring of a Mackey functor, introduced in our 1990 MSRI preprint. Some refinements of Dress induction theory are presented, together with applications to computation results for K-theory and L-theory of finite and infinite groups.

Article information

Source
Algebra Number Theory, Volume 3, Number 5 (2009), 511-541.

Dates
Received: 27 March 2008
Revised: 1 May 2009
Accepted: 4 May 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513797447

Digital Object Identifier
doi:10.2140/ant.2009.3.511

Mathematical Reviews number (MathSciNet)
MR2578887

Zentralblatt MATH identifier
1213.19001

Subjects
Primary: 20C15: Ordinary representations and characters
Secondary: 18F25: Algebraic $K$-theory and L-theory [See also 11Exx, 11R70, 11S70, 12- XX, 13D15, 14Cxx, 16E20, 19-XX, 46L80, 57R65, 57R67] 57R67: Surgery obstructions, Wall groups [See also 19J25] 19A22: Frobenius induction, Burnside and representation rings

Keywords
Dress induction Mackey functors surgery obstruction groups

Citation

Hambleton, Ian; Taylor, Laurence; Williams, Bruce. Dress induction and the Burnside quotient Green ring. Algebra Number Theory 3 (2009), no. 5, 511--541. doi:10.2140/ant.2009.3.511. https://projecteuclid.org/euclid.ant/1513797447


Export citation

References

  • A. Bak, “Induction for finite groups revisited”, J. Pure Appl. Algebra 104:3 (1995), 235–241.
  • S. Bouc, “The functor of units of Burnside rings for $p$-groups”, Comment. Math. Helv. 82:3 (2007), 583–615.
  • S. Bouc, “Rational $p$-biset functors”, J. Algebra 319:4 (2008), 1776–1800. http://www.ams.org/mathscinet-getitem?mr=2009a:20032MR 2009a:20032
  • T. tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8, Walter de Gruyter & Co., Berlin, 1987.
  • A. W. M. Dress, “Contributions to the theory of induced representations”, pp. 183–240 in Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic, edited by H. Bass, Lecture Notes in Math. 342, Springer, Berlin, 1973.
  • A. W. M. Dress, “Induction and structure theorems for orthogonal representations of finite groups”, Ann. of Math. $(2)$ 102:2 (1975), 291–325.
  • F. T. Farrell and W. C. Hsiang, “Rational $L$-groups of Bieberbach groups”, Comment. Math. Helv. 52:1 (1977), 89–109.
  • F. T. Farrell and W. C. Hsiang, “The Whitehead group of poly-(finite or cyclic) groups”, J. London Math. Soc. $(2)$ 24:2 (1981), 308–324.
  • J. A. Green, “Axiomatic representation theory for finite groups”, J. Pure Appl. Algebra 1:1 (1971), 41–77.
  • I. Hambleton, “Some examples of free actions on products of spheres”, Topology 45:4 (2006), 735–749.
  • I. Hambleton and W. Lück, “Induction and computation of Bass nil groups for finite groups”, preprint, 2007.
  • I. Hambleton and E. K. Pedersen, “Bounded surgery and dihedral group actions on spheres”, J. Amer. Math. Soc. 4 (1991), 105–126.
  • I. Hambleton and E. K. Pedersen, “Identifying assembly maps in $K$- and $L$-theory”, Math. Ann. 328:1-2 (2004), 27–57.
  • I. Hambleton and L. R. Taylor, “Rational permutation modules for finite groups”, Math. Z. 231:4 (1999), 707–726.
  • I. Hambleton and L. R. Taylor, “A guide to the calculation of the surgery obstruction groups for finite groups”, pp. 225–274 in Surveys on surgery theory, vol. 1, edited by S. Cappell et al., Ann. of Math. Stud. 145, Princeton Univ. Press, Princeton, NJ, 2000.
  • I. Hambleton, L. R. Taylor, and B. Williams, “Induction theory”, MSRI Preprint 05425-90, 1990.
  • I. Hambleton, A. Ranicki, and L. R. Taylor, “Round $L$-theory”, J. Pure Appl. Algebra 47:2 (1987), 131–154.
  • I. Hambleton, L. R. Taylor, and B. Williams, “Detection theorems for $K$-theory and $L$-theory”, J. Pure Appl. Algebra 63:3 (1990), 247–299.
  • I. Hambleton, L. R. Taylor, and B. Williams, “Mackey functors and bisets”, preprint, 2008.
  • T.-y. Lam, “Induction theorems for Grothendieck groups and Whitehead groups of finite groups”, Ann. Sci. École Norm. Sup. $(4)$ 1 (1968), 91–148.
  • H. Lindner, “A remark on Mackey-functors”, Manuscripta Math. 18:3 (1976), 273–278.
  • S. MacLane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics 5, Springer, New York, 1971.
  • A. J. Nicas, “Frobenius induction for higher Whitehead groups”, Canad. J. Math. 39:1 (1987), 222–238.
  • R. Oliver, Whitehead groups of finite groups, London Mathematical Society Lecture Note Series 132, Cambridge University Press, 1988.
  • A. Ranicki, Lower $K$- and $L$-theory, London Mathematical Society Lecture Note Series 178, Cambridge University Press, 1992.
  • R. G. Swan, $K$-theory of finite groups and orders, Lecture Notes in Mathematics 149, Springer, Berlin, 1970.
  • L. R. Taylor, “Surgery groups and inner automorphisms”, pp. 471–477 in Algebraic $K$-theory, III: Hermitian $K$-theory and geometric applications, edited by H. Bass, Lecture Notes in Math. 343, Springer, Berlin, 1973.
  • J. Thévenaz, “A visit to the kingdom of the Mackey functors”, pp. 215–241 in Darstellungstheorietage (Sion, Switzerland, 1989), Bayreuth. Math. Schr. 33, 1990.
  • J. Thévenaz and P. Webb, “The structure of Mackey functors”, Trans. Amer. Math. Soc. 347:6 (1995), 1865–1961.
  • C. T. C. Wall, “On the classification of Hermitian forms. V. Global rings”, Invent. Math. 23 (1974), 261–288.
  • C. T. C. Wall, “Classification of Hermitian Forms. VI. Group rings”, Ann. of Math. $(2)$ 103:1 (1976), 1–80.
  • C. T. C. Wall, Surgery on compact manifolds, 2nd ed., edited by A. A. Ranicki, Mathematical Surveys and Monographs 69, American Mathematical Society, Providence, RI, 1999.
  • M. Weiss and B. Williams, “Automorphisms of manifolds and algebraic $K$-theory. II”, J. Pure Appl. Algebra 62:1 (1989), 47–107.