Algebra & Number Theory

The moduli space of curves is rigid

Paul Hacking

Full-text: Open access

Abstract

We prove that the moduli stack ¯g,n of stable curves of genus g with n marked points is rigid, that is, has no infinitesimal deformations. This confirms the first case of a principle proposed by Kapranov. It can also be viewed as a version of Mostow rigidity for the mapping class group.

Article information

Source
Algebra Number Theory, Volume 2, Number 7 (2008), 809-818.

Dates
Received: 30 November 2007
Revised: 6 August 2008
Accepted: 17 September 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513797320

Digital Object Identifier
doi:10.2140/ant.2008.2.809

Mathematical Reviews number (MathSciNet)
MR2460695

Zentralblatt MATH identifier
1166.14019

Subjects
Primary: 14H10: Families, moduli (algebraic)

Keywords
moduli curve rigidity

Citation

Hacking, Paul. The moduli space of curves is rigid. Algebra Number Theory 2 (2008), no. 7, 809--818. doi:10.2140/ant.2008.2.809. https://projecteuclid.org/euclid.ant/1513797320


Export citation

References

  • D. Abramovich and A. Vistoli, “Compactifying the space of stable maps”, J. Amer. Math. Soc. 15:1 (2002), 27–75.
  • S. J. Arakelov, “Familien algebraischer Kurven mit festen Entartungen”, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1269–1293. In Russian; translated in Math. USSR-Izv. \bf5 (1971), 1277–1302.
  • P. Deligne and D. Mumford, “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109.
  • P. Hacking, S. Keel, and J. Tevelev, “Compactification of the moduli space of hyperplane arrangements”, J. Algebraic Geom. 15:4 (2006), 657–680. http://www.emis.de/cgi-bin/MATH-item?1117.14036Zbl 1117.14036
  • J. Harris and I. Morrison, Moduli of curves, Graduate Texts in Mathematics 187, Springer, New York, 1998.
  • J. Harris and D. Mumford, “On the Kodaira dimension of the moduli space of curves”, Invent. Math. 67:1 (1982), 23–88.
  • M. Kapranov, “Deformations of moduli spaces”, 1997. Unpublished manuscript.
  • S. Keel, “Basepoint freeness for nef and big line bundles in positive characteristic”, Ann. of Math. $(2)$ 149:1 (1999), 253–286.
  • S. L. Kleiman, “Relative duality for quasicoherent sheaves”, Compositio Math. 41:1 (1980), 39–60.
  • F. F. Knudsen, “The projectivity of the moduli space of stable curves. II. The stacks $M\sb{g,n}$”, Math. Scand. 52:2 (1983), 161–199.
  • F. F. Knudsen, “The projectivity of the moduli space of stable curves. III. The line bundles on $M\sb{g,n}$, and a proof of the projectivity of $\overline M\sb{g,n}$ in characteristic $0$”, Math. Scand. 52:2 (1983), 200–212.
  • J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge University Press, Cambridge, 1998. Translated from the 1998 Japanese original.
  • L. Lafforgue, Chirurgie des grassmanniennes, CRM Monograph Series 19, American Mathematical Society, Providence, RI, 2003.
  • K. Matsuki and M. Olsson, “Kawamata–Viehweg vanishing as Kodaira vanishing for stacks”, Math. Res. Lett. 12:2-3 (2005), 207–217.
  • Y. T. Siu, “The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds”, Ann. of Math. $(2)$ 112:1 (1980), 73–111.