Algebra & Number Theory

Zeros of $L$-functions outside the critical strip

Andrew Booker and Frank Thorne

Full-text: Open access

Abstract

For a wide class of Dirichlet series associated to automorphic forms, we show that those without Euler products must have zeros within the region of absolute convergence. For instance, we prove that if fSk(Γ1(N)) is a classical holomorphic modular form whose L-function does not vanish for (s)>(k+1)2, then f is a Hecke eigenform. Our proof adapts and extends work of Saias and Weingartner, who proved a similar result for degree-1 L-functions.

Article information

Source
Algebra Number Theory, Volume 8, Number 9 (2014), 2027-2042.

Dates
Received: 26 June 2013
Revised: 17 June 2014
Accepted: 25 August 2014
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513730308

Digital Object Identifier
doi:10.2140/ant.2014.8.2027

Mathematical Reviews number (MathSciNet)
MR3294385

Zentralblatt MATH identifier
1320.11044

Subjects
Primary: 11F66: Langlands $L$-functions; one variable Dirichlet series and functional equations
Secondary: 11M99: None of the above, but in this section 11F11: Holomorphic modular forms of integral weight

Keywords
$L$-functions Euler products automorphic forms

Citation

Booker, Andrew; Thorne, Frank. Zeros of $L$-functions outside the critical strip. Algebra Number Theory 8 (2014), no. 9, 2027--2042. doi:10.2140/ant.2014.8.2027. https://projecteuclid.org/euclid.ant/1513730308


Export citation

References

  • M. Avdispahić and L. Smajlović, “On the Selberg orthogonality for automorphic $L$-functions”, Arch. Math. $($Basel$)$ 94:2 (2010), 147–154.
  • E. Bombieri and D. A. Hejhal, “On the distribution of zeros of linear combinations of Euler products”, Duke Math. J. 80:3 (1995), 821–862.
  • J. B. Conrey and A. Ghosh, “Turán inequalities and zeros of Dirichlet series associated with certain cusp forms”, Trans. Amer. Math. Soc. 342:1 (1994), 407–419.
  • H. Davenport and H. Heilbronn, “On the Zeros of Certain Dirichlet Series”, J. London Math. Soc. S1-11:3 (1936), 181–185.
  • H. Davenport and H. Heilbronn, “On the Zeros of Certain Dirichlet Series”, J. London Math. Soc. S1-11:4 (1936), 307–312.
  • S. Gelbart and H. Jacquet, “A relation between automorphic representations of ${\rm GL}(2)$ and ${\rm GL}(3)$”, Ann. Sci. École Norm. Sup. $(4)$ 11:4 (1978), 471–542.
  • H. Jacquet and J. A. Shalika, “A non-vanishing theorem for zeta functions of ${\rm GL}\sb{n}$”, Invent. Math. 38:1 (1976), 1–16.
  • H. H. Kim, “A note on Fourier coefficients of cusp forms on ${\rm GL}\sb n$”, Forum Math. 18:1 (2006), 115–119.
  • A. Laurinčikas and K. Matsumoto, “The joint universality of twisted automorphic $L$-functions”, J. Math. Soc. Japan 56:3 (2004), 923–939.
  • T. Nakamura and Ł. Pánkowski, “Any non-monomial polynomial of the Riemann zeta-function has complex zeros off the critical line”, preprint, 2012.
  • Z. Rudnick and P. Sarnak, “Zeros of principal $L$-functions and random matrix theory”, Duke Math. J. 81:2 (1996), 269–322.
  • E. Saias and A. Weingartner, “Zeros of Dirichlet series with periodic coefficients”, Acta Arith. 140:4 (2009), 335–344.
  • S. M. Voronin, “A theorem on the “universality” of the Riemann zeta-function”, Izv. Akad. Nauk SSSR Ser. Mat. 39:3 (1975), 475–486, 703. In Russian; translated in Math. UUSR-Izv. 9:3 (1975), 443–453.
  • J. Wu and Y. Ye, “Hypothesis H and the prime number theorem for automorphic representations”, Funct. Approx. Comment. Math. 37:part 2 (2007), 461–471.