Algebra & Number Theory

The Tannakian formalism and the Langlands conjectures

David Kazhdan, Michael Larsen, and Yakov Varshavsky

Full-text: Open access

Abstract

Let H be a connected reductive group over an algebraically closed field of characteristic zero, and let Γ be an abstract group. In this note, we show that every homomorphism of Grothendieck semirings ϕ:K0+[H]K0+[Γ], which maps irreducible representations to irreducible, comes from a group homomorphism ρ:ΓH(K). We also connect this result with the Langlands conjectures.

Article information

Source
Algebra Number Theory, Volume 8, Number 1 (2014), 243-256.

Dates
Received: 2 September 2012
Revised: 20 August 2013
Accepted: 19 September 2013
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513730140

Digital Object Identifier
doi:10.2140/ant.2014.8.243

Mathematical Reviews number (MathSciNet)
MR3207584

Zentralblatt MATH identifier
06322077

Subjects
Primary: 11R39: Langlands-Weil conjectures, nonabelian class field theory [See also 11Fxx, 22E55]
Secondary: 11F80: Galois representations 17B10: Representations, algebraic theory (weights) 18D10: Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories [See also 19D23]

Keywords
Tannaka duality Langlands conjectures

Citation

Kazhdan, David; Larsen, Michael; Varshavsky, Yakov. The Tannakian formalism and the Langlands conjectures. Algebra Number Theory 8 (2014), no. 1, 243--256. doi:10.2140/ant.2014.8.243. https://projecteuclid.org/euclid.ant/1513730140


Export citation

References

  • A. Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics 126, Springer, New York, 1991.
  • C. Chevalley, Théorie des groupes de Lie, III: Théorèmes généraux sur les algèbres de Lie, Actualités Sci. Ind. 1226, Hermann & Cie, Paris, 1955.
  • P. Deligne and J. S. Milne, “Tannakian categories”, pp. 101–228 in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics 900, Springer, Berlin, 1982.
  • D. Handelman, “Representation rings as invariants for compact groups and limit ratio theorems for them”, Internat. J. Math. 4:1 (1993), 59–88.
  • D. Kazhdan and Y. Varshavsky, “On the cohomology of the moduli spaces of $F$-bundles: stable cuspidal Deligne–Lusztig part”, In preparation.
  • S. Kumar, “Proof of the Parthasarathy–Ranga Rao–Varadarajan conjecture”, Invent. Math. 93:1 (1988), 117–130.
  • M. Larsen and R. Pink, “Determining representations from invariant dimensions”, Invent. Math. 102:2 (1990), 377–398.
  • J. R. McMullen, “On the dual object of a compact connected group”, Math. Z. 185:4 (1984), 539–552.
  • R. Steinberg, “Regular elements of semisimple algebraic groups”, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80.