Algebra & Number Theory

Principal $W$-algebras for $\operatorname{GL}(m\vert n)$

Jonathan Brown, Jonathan Brundan, and Simon Goodwin

Full-text: Open access

Abstract

We consider the (finite) W-algebra Wm|n attached to the principal nilpotent orbit in the general linear Lie superalgebra glm|n(). Our main result gives an explicit description of Wm|n as a certain truncation of a shifted version of the Yangian Y(gl1|1). We also show that Wm|n admits a triangular decomposition and construct its irreducible representations.

Article information

Source
Algebra Number Theory, Volume 7, Number 8 (2013), 1849-1882.

Dates
Received: 10 May 2012
Accepted: 17 December 2012
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513730071

Digital Object Identifier
doi:10.2140/ant.2013.7.1849

Mathematical Reviews number (MathSciNet)
MR3134037

Zentralblatt MATH identifier
1302.17008

Subjects
Primary: 17B10: Representations, algebraic theory (weights)
Secondary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23]

Keywords
$W$-algebras Lie superalgebras

Citation

Brown, Jonathan; Brundan, Jonathan; Goodwin, Simon. Principal $W$-algebras for $\operatorname{GL}(m\vert n)$. Algebra Number Theory 7 (2013), no. 8, 1849--1882. doi:10.2140/ant.2013.7.1849. https://projecteuclid.org/euclid.ant/1513730071


Export citation

References

  • E. Backelin, “Representation of the category $\mathscr{O}$ in Whittaker categories”, Internat. Math. Res. Notices 1997:4 (1997), 153–172.
  • C. Briot and E. Ragoucy, “$\mathscr{W}$-superalgebras as truncations of super-Yangians”, J. Phys. A 36:4 (2003), 1057–1081.
  • J. Brown, J. Brundan, and S. M. Goodwin, “Whittaker coinvariants for $\mathrm{GL}(m|n)$”, in preparation.
  • J. Brundan and S. M. Goodwin, “Good grading polytopes”, Proc. Lond. Math. Soc. $(3)$ 94:1 (2007), 155–180.
  • J. Brundan and A. Kleshchev, “Shifted Yangians and finite $W$-algebras”, Adv. Math. 200:1 (2006), 136–195.
  • J. Brundan and A. Kleshchev, “Representations of shifted Yangians and finite $W$-algebras”, Mem. Amer. Math. Soc. 196:918 (2008).
  • J. Brundan, S. M. Goodwin, and A. Kleshchev, “Highest weight theory for finite $W$-algebras”, Int. Math. Res. Not. 2008:15 (2008), Article ID rnn051.
  • A. De Sole and V. G. Kac, “Finite vs affine $W$-algebras”, Jpn. J. Math. 1:1 (2006), 137–261.
  • W. L. Gan and V. Ginzburg, “Quantization of Slodowy slices”, Int. Math. Res. Not. 2002:5 (2002), 243–255.
  • L. Gow, “Gauss decomposition of the Yangian $Y({\mathfrak{gl}}\sb {m\vert n})$”, Comm. Math. Phys. 276:3 (2007), 799–825.
  • C. Hoyt, “Good gradings of basic Lie superalgebras”, Israel J. Math. 192 (2012), 251–280.
  • B. Kostant, “On Whittaker vectors and representation theory”, Invent. Math. 48:2 (1978), 101–184.
  • I. Losev, “Finite $W$-algebras”, pp. 1281–1307 in Proceedings of the International Congress of Mathematicians (Hyderabad, India, 2010), vol. 3, edited by R. Bhatia et al., Hindustan Book Agency, New Delhi, 2011.
  • I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., The Clarendon Press Oxford University Press, New York, 1995.
  • M. L. Nazarov, “Quantum Berezinian and the classical Capelli identity”, Lett. Math. Phys. 21:2 (1991), 123–131.
  • Y.-N. Peng, “Parabolic presentations of the super Yangian $Y(\mathfrak{gl}\sb {M\vert N})$”, Comm. Math. Phys. 307:1 (2011), 229–259.
  • E. Poletaeva and V. Serganova, “On finite $W$-algebras for Lie superalgebras in the regular case”, pp. 487–497 in Lie theory and its applications in physics (Varna, Bulgaria, 2011), edited by V. Dobrev, Proceedings in Mathematics & Statistics 36, Springer, Tokyo, 2013.
  • W. Soergel, “Kategorie $\mathscr{O}$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe”, J. Amer. Math. Soc. 3:2 (1990), 421–445.
  • T. A. Springer and R. Steinberg, “Conjugacy classes”, pp. 167–266 in Seminar on Algebraic Groups and Related Finite Groups (Princeton, 1968–1969), Lecture Notes in Mathematics 131, Springer, Berlin, 1970.
  • V. O. Tarasov, “Irreducible monodromy matrices for an $R$-matrix of the $XXZ$ model, and lattice local quantum Hamiltonians”, Teoret. Mat. Fiz. 63:2 (1985), 175–196. In Russian; translated in Theoret. and Math. Phys. 63:2 (1985), 440–454.
  • L. Zhao, “Finite $W$-superalgebras for queer Lie superalgebras”, preprint, 2012. http://msp.org/idx/arx/1012.2326arXiv 1012.2326