Algebra & Number Theory

Ekedahl–Oort strata of hyperelliptic curves in characteristic 2

Arsen Elkin and Rachel Pries

Full-text: Open access

Abstract

Suppose X is a hyperelliptic curve of genus g defined over an algebraically closed field k of characteristic p=2. We prove that the de Rham cohomology of X decomposes into pieces indexed by the branch points of the hyperelliptic cover. This allows us to compute the isomorphism class of the 2-torsion group scheme JX[2] of the Jacobian of X in terms of the Ekedahl–Oort type. The interesting feature is that JX[2] depends only on some discrete invariants of X, namely, on the ramification invariants associated with the branch points. We give a complete classification of the group schemes that occur as the 2-torsion group schemes of Jacobians of hyperelliptic k-curves of arbitrary genus, showing that only relatively few of the possible group schemes actually do occur.

Article information

Source
Algebra Number Theory, Volume 7, Number 3 (2013), 507-532.

Dates
Received: 7 July 2010
Revised: 11 April 2012
Accepted: 16 April 2012
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513729964

Digital Object Identifier
doi:10.2140/ant.2013.7.507

Mathematical Reviews number (MathSciNet)
MR3095219

Zentralblatt MATH identifier
1282.11065

Subjects
Primary: 11G20: Curves over finite and local fields [See also 14H25]
Secondary: 14K15: Arithmetic ground fields [See also 11Dxx, 11Fxx, 11G10, 14Gxx] 14L15: Group schemes 14H40: Jacobians, Prym varieties [See also 32G20] 14F40: de Rham cohomology [See also 14C30, 32C35, 32L10] 11G10: Abelian varieties of dimension > 1 [See also 14Kxx]

Keywords
curve hyperelliptic Artin–Schreier Jacobian $p$-torsion $a$-number group scheme de Rham cohomology Ekedahl–Oort strata

Citation

Elkin, Arsen; Pries, Rachel. Ekedahl–Oort strata of hyperelliptic curves in characteristic 2. Algebra Number Theory 7 (2013), no. 3, 507--532. doi:10.2140/ant.2013.7.507. https://projecteuclid.org/euclid.ant/1513729964


Export citation

References

  • R. Blache, “Valuation of exponential sums and the generic first slope for Artin–Schreier curves”, J. Number Theory 132:10 (2012), 2336–2352.
  • I. I. Bouw, “The $p$-rank of ramified covers of curves”, Compositio Math. 126:3 (2001), 295–322.
  • P. Cartier, “Une nouvelle opération sur les formes différentielles”, C. R. Acad. Sci. Paris 244 (1957), 426–428.
  • R. M. Crew, “Etale $p$-covers in characteristic $p$”, Compositio Math. 52:1 (1984), 31–45.
  • M. Demazure, Lectures on $p$-divisible groups, Lecture Notes in Mathematics 302, Springer, Berlin, 1972.
  • T. Ekedahl, “On supersingular curves and abelian varieties”, Math. Scand. 60:2 (1987), 151–178.
  • A. Elkin, “The rank of the Cartier operator on cyclic covers of the projective line”, J. Algebra 327 (2011), 1–12.
  • E. Z. Goren, Lectures on Hilbert modular varieties and modular forms, CRM Monograph Series 14, American Mathematical Society, Providence, RI, 2002. http://www.zentralblatt-math.org/zmath/en/search/?an=0986.11037Zbl 0986.11037
  • S. Harashita, “Ekedahl–Oort strata and the first Newton slope strata”, J. Algebraic Geom. 16:1 (2007), 171–199.
  • G. H. Hardy and S. Ramanujan, “Asymptotic formulæ in combinatory analysis”, Proc. Lond. Math. Soc. (2) 17 (1918), 75–115. Reprinted as pp. 276–309 in Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000.
  • O. Johnston, “A note on the $a$-numbers and $p$-ranks of Kummer covers”, preprint, 2007.
  • H. Kraft, “Kommutative algebraische $p$-Gruppen (mit Anwendungen auf $p$-divisible Gruppen und abelsche Varietäten)”, manuscript, Sonderforsch. Bereich Bonn, 1975.
  • K.-Z. Li and F. Oort, Moduli of supersingular abelian varieties, Lecture Notes in Mathematics 1680, Springer, Berlin, 1998.
  • D. J. Madden, “Arithmetic in generalized Artin–Schreier extensions of $k(x)$”, J. Number Theory 10:3 (1978), 303–323.
  • B. Moonen, “Group schemes with additional structures and Weyl group cosets”, pp. 255–298 in Moduli of abelian varieties (Texel Island, 1999), edited by C. Faber et al., Progr. Math. 195, Birkhäuser, Basel, 2001.
  • E. Nart and D. Sadornil, “Hyperelliptic curves of genus three over finite fields of even characteristic”, Finite Fields Appl. 10:2 (2004), 198–220.
  • T. Oda, “The first de Rham cohomology group and Dieudonné modules”, Ann. Sci. École Norm. Sup. $(4)$ 2 (1969), 63–135.
  • F. Oort, “A stratification of a moduli space of abelian varieties”, pp. 345–416 in Moduli of abelian varieties (Texel Island, 1999), edited by C. Faber et al., Progr. Math. 195, Birkhäuser, Basel, 2001.
  • R. Pries, “A short guide to $p$-torsion of abelian varieties in characteristic $p$”, pp. 121–129 in Computational arithmetic geometry (San Francisco, CA, 2006), edited by K. E. Lauter and K. A. Ribet, Contemp. Math. 463, American Mathematical Society, Providence, RI, 2008.
  • J. Scholten and H. J. Zhu, “Hyperelliptic curves in characteristic 2”, Int. Math. Res. Not. 2002:17 (2002), 905–917.
  • J.-P. Serre, Corps locaux, 2nd ed., Actualités scientifiques et industrielles 1296, Hermann, Paris, 1968.
  • H. Stichtenoth, Algebraic function fields and codes, 2nd ed., Graduate Texts in Mathematics 254, Springer, Berlin, 2009.
  • D. Subrao, “The $p$-rank of Artin–Schreier curves”, Manuscripta Math. 16:2 (1975), 169–193.
  • F. J. Sullivan, “$p$-torsion in the class group of curves with too many automorphisms”, Arch. Math. $($Basel$)$ 26 (1975), 253–261.
  • G. van der Geer, “Cycles on the moduli space of abelian varieties”, pp. 65–89 in Moduli of curves and abelian varieties: The Dutch intercity seminar on moduli, edited by C. Faber and E. Looijenga, Aspects Math. E33, Vieweg, Braunschweig, 1999.
  • N. Yui, “On the Jacobian varieties of hyperelliptic curves over fields of characteristic $p>2$”, J. Algebra 52:2 (1978), 378–410.