Algebra & Number Theory

Steinberg groups as amalgams

Daniel Allcock

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For any root system and any commutative ring, we give a relatively simple presentation of a group related to its Steinberg group St. This includes the case of infinite root systems used in Kac–Moody theory, for which the Steinberg group was defined by Tits and Morita–Rehmann. In most cases, our group equals St, giving a presentation with many advantages over the usual presentation of St. This equality holds for all spherical root systems, all irreducible affine root systems of rank > 2, and all 3-spherical root systems. When the coefficient ring satisfies a minor condition, the last condition can be relaxed to 2-sphericity.

Our presentation is defined in terms of the Dynkin diagram rather than the full root system. It is concrete, with no implicit coefficients or signs. It makes manifest the exceptional diagram automorphisms in characteristics 2 and 3, and their generalizations to Kac–Moody groups. And it is a Curtis–Tits style presentation: it is the direct limit of the groups coming from 1- and 2-node subdiagrams of the Dynkin diagram. Over nonfields this description as a direct limit is new and surprising. Our main application is that many Steinberg and Kac–Moody groups over finitely generated rings are finitely presented.

Article information

Source
Algebra Number Theory, Volume 10, Number 8 (2016), 1791-1843.

Dates
Received: 29 March 2016
Accepted: 11 June 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1510842588

Digital Object Identifier
doi:10.2140/ant.2016.10.1791

Mathematical Reviews number (MathSciNet)
MR3556798

Zentralblatt MATH identifier
1360.19003

Subjects
Primary: 19C99: None of the above, but in this section
Secondary: 20G44: Kac-Moody groups 14L15: Group schemes

Keywords
Kac–Moody group Steinberg group pre-Steinberg group Curtis–Tits presentation

Citation

Allcock, Daniel. Steinberg groups as amalgams. Algebra Number Theory 10 (2016), no. 8, 1791--1843. doi:10.2140/ant.2016.10.1791. https://projecteuclid.org/euclid.ant/1510842588


Export citation

References

  • P. Abramenko and K. S. Brown, Buildings: theory and applications, Graduate Texts in Mathematics 248, Springer, New York, 2008.
  • P. Abramenko and B. Mühlherr, “Présentations de certaines $B`N$-paires jumelées comme sommes amalgamées”, C. R. Acad. Sci. Paris Sér. I Math. 325:7 (1997), 701–706.
  • D. Allcock, “Reflection centralizers in Coxeter groups”, Transform. Groups 18:3 (2013), 599–613.
  • D. Allcock, “Presentation of affine Kac–Moody groups over rings”, Algebra Number Theory 10:3 (2016), 533–556.
  • D. Allcock and L. Carbone, “Presentation of hyperbolic Kac–Moody groups over rings”, J. Algebra 445 (2016), 232–243.
  • R. E. Borcherds, “Coxeter groups, Lorentzian lattices, and $K3$ surfaces”, Internat. Math. Res. Notices 19 (1998), 1011–1031.
  • N. Bourbaki, Éléments de mathématique, XXXVIII: Groupes et algèbres de Lie (Chapitre VII: Sous-algèbres de Cartan, éléments réguliers; Chapitre VIII: Algèbres de Lie semi-simples déployées), Actualités Scientifiques et Industrielles, No. 1364., Hermann, Paris, 1975.
  • N. Bourbaki, Lie groups and Lie algebras, Chapters 4–6, Springer, Berlin, 2002.
  • B. Brink, “On centralizers of reflections in Coxeter groups”, Bull. London Math. Soc. 28:5 (1996), 465–470.
  • B. Brink and R. B. Howlett, “Normalizers of parabolic subgroups in Coxeter groups”, Invent. Math. 136:2 (1999), 323–351.
  • P.-E. Caprace and B. Rémy, “Groups with a root group datum”, Innov. Incidence Geom. 9 (2009), 5–77.
  • R. W. Carter, Simple groups of Lie type, Pure and Applied Mathematics 28, John Wiley & Sons, London-New York-Sydney, 1972.
  • R. K. Dennis and M. R. Stein, “Injective stability for $K\sb{2}$ of local rings”, Bull. Amer. Math. Soc. 80 (1974), 1010–1013.
  • H. Garland, “The arithmetic theory of loop algebras”, J. Algebra 53:2 (1978), 480–551. Correction in 63:1 (1980), 285.
  • J.-Y. Hée, “Construction de groupes tordus en théorie de Kac–Moody”, C. R. Acad. Sci. Paris Sér. I Math. 310:3 (1990), 77–80.
  • J.-Y. Hée, “Torsion de groupes munis d'une donnée radicielle”, J. Algebra 319:11 (2008), 4738–4758.
  • D. L. Johnson, Presentations of groups, 2nd ed., London Mathematical Society Student Texts 15, Cambridge University Press, 1997.
  • V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, 1990.
  • G. Kiralis, S. Krstić, and J. McCool, “Finite presentability of $\Phi\sb n(G),\ {\rm GL}\sb n(\bold ZG)$ and their elementary subgroups and Steinberg groups”, Proc. London Math. Soc. $(3)$ 73:3 (1996), 575–622.
  • B. Kostant, “Groups over $Z$”, pp. 90–98 in Algebraic Groups and Discontinuous Subgroups (Boulder, CO, 1965), edited by A. Borel and G. D. Mostow, Amer. Math. Soc., Providence, RI, 1966.
  • S. Lang, Fundamentals of Diophantine geometry, Springer, New York, 1983.
  • F. A. Li, “Finite presentability of Steinberg groups over group rings”, Acta Math. Sinica $($N.S.$)$ 5:4 (1989), 297–301.
  • J. Morita and U. Rehmann, “A Matsumoto-type theorem for Kac–Moody groups”, Tohoku Math. J. $(2)$ 42:4 (1990), 537–560.
  • U. Rehmann and C. Soulé, “Finitely presented groups of matrices”, pp. 164–169. Lecture Notes in Math., Vol. 551 in Algebraic $K$-theory (Northwestern Univ., Evanston, IL, 1976), edited by M. R. Stein, Springer, Berlin, 1976.
  • B. Rémy, Groupes de Kac–Moody déployés et presque déployés, Astérisque 277, Société Mathématique de France, Paris, 2002.
  • M. Demazure and A. Grothendieck, Schémas en groupes, Tome III: Structure des schémas en groupes réductifs, Exposés XIX–XXVI (Séminaire de Géométrie Algébrique du Bois Marie 1962–1964), Lecture Notes in Math. 153, Springer, Berlin, 1970.
  • S. Splitthoff, “Finite presentability of Steinberg groups and related Chevalley groups”, pp. 635–687 in Applications of algebraic $K$-theory to algebraic geometry and number theory, Part II (Boulder, CO, 1983), edited by S. J. Bloch et al., Contemp. Math. 55, Amer. Math. Soc., Providence, RI, 1986.
  • R. Steinberg, Lectures on Chevalley groups, edited by J. Faulkner and R. Wilson, Yale University, New Haven, CT, 1968.
  • J. Tits, “Normalisateurs de tores, I: Groupes de Coxeter étendus”, J. Algebra 4 (1966), 96–116.
  • J. Tits, “Sur les constantes de structure et le théorème d'existence des algèbres de Lie semi-simples”, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 21–58.
  • J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics 386, Springer, Berlin-New York, 1974.
  • J. Tits, “Uniqueness and presentation of Kac–Moody groups over fields”, J. Algebra 105:2 (1987), 542–573.
  • J. Tits, “Twin buildings and groups of Kac–Moody type”, pp. 249–286 in Groups, combinatorics & geometry (Durham, 1990), edited by M. Liebeck and J. Saxl, London Math. Soc. Lecture Note Ser. 165, Cambridge University Press, 1992.
  • H. Zhang, “Finite presentability of Steinberg group ${\rm St}\sb n(L\Pi)$”, Northeast. Math. J. 7:3 (1991), 317–325.