Asian Journal of Mathematics
- Asian J. Math.
- Volume 10, Number 3 (2006), 541-560.
Brackets, forms and invariant functionals
Abstract
In the context of generalized geometry we first show how the Courant bracket helps to define connections with skew torsion and then investigate a five-dimensional invariant functional and its associated geometry, which involves three Courant-commuting sections of $T \bigoplus T\sp *$ . A Hamiltonian flow arising from this corresponds to a version of the Nahm equations, and we investigate the sixdimensional geometrical structure this describes.
Article information
Source
Asian J. Math., Volume 10, Number 3 (2006), 541-560.
Dates
First available in Project Euclid: 5 April 2007
Permanent link to this document
https://projecteuclid.org/euclid.ajm/1175789045
Mathematical Reviews number (MathSciNet)
MR2253158
Zentralblatt MATH identifier
1113.53030
Subjects
Primary: 53C80: Applications to physics 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)
Keywords
Generalized geometry Courant bracket skew torsion gerbe
Citation
Hitchin, Nigel. Brackets, forms and invariant functionals. Asian J. Math. 10 (2006), no. 3, 541--560. https://projecteuclid.org/euclid.ajm/1175789045