Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Gaussian fluctuations for the classical XY model

Charles M. Newman and Wei Wu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study the classical XY model in bounded domains of $\mathbb{Z}^{d}$ with Dirichlet boundary conditions. We prove that when the temperature goes to zero faster than a certain rate as the lattice spacing goes to zero, the fluctuation field converges to a Gaussian white noise. This and related results also apply to a large class of gradient field models.

Résumé

Nous étudions le modèle XY classique dans un domaine borné de $\mathbb{Z}^{d}$ avec condition de Dirichlet au bord. Nous prouvons que quand la température tend vers 0 suffisamment vite avec le pas du graphe, le champ des fluctuations converge vers le bruit blanc Gaussien. Ce résultat ainsi que les résultats associés s’appliquent aussi à une classe large de modèles de champs gradients.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 54, Number 4 (2018), 1759-1777.

Dates
Received: 29 December 2016
Accepted: 13 July 2017
First available in Project Euclid: 18 October 2018

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1539849782

Digital Object Identifier
doi:10.1214/17-AIHP854

Mathematical Reviews number (MathSciNet)
MR3865656

Zentralblatt MATH identifier
06996548

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
Secondary: 60F17: Functional limit theorems; invariance principles 60G60: Random fields

Keywords
XY model Spin-wave approximation Gaussian free field Gradient field models Random walk representation Central limit theorem

Citation

Newman, Charles M.; Wu, Wei. Gaussian fluctuations for the classical XY model. Ann. Inst. H. Poincaré Probab. Statist. 54 (2018), no. 4, 1759--1777. doi:10.1214/17-AIHP854. https://projecteuclid.org/euclid.aihp/1539849782


Export citation

References

  • [1] M. Biskup. Reflection positivity and phase transitions in lattice spin models. In Methods of Contemporary Mathematical Statistical Physics 1–86. Springer, Berlin, 2009.
  • [2] M. Biskup and H. Spohn. Scaling limit for a class of gradient fields with nonconvex potentials. Ann. Probab. 39 (1) (2011) 224–251.
  • [3] H. J. Brascamp and E. H. Lieb. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 (4) (1976) 366–389.
  • [4] J. Bricmont and J.-R. Fontaine. Correlation inequalities and contour estimates. J. Stat. Phys. 26 (4) (1981) 745–753.
  • [5] J. Bricmont, J.-R. Fontaine, J. L. Lebowitz, E. H. Lieb and T. Spencer. Lattice systems with a continuous symmetry. III. Low temperature asymptotic expansion for the plane rotator model. Comm. Math. Phys. 78 (4) (1980) 545–566.
  • [6] D. Brydges, J. Fröhlich and T. Spencer. In preparation.
  • [7] T. Delmotte and J.-D. Deuschel. On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to $\nabla\phi$ interface model. Probab. Theory Related Fields 133 (3) (2005) 358–390.
  • [8] J.-D. Deuschel, G. Giacomin and D. Ioffe. Large deviations and concentration properties for $\nabla\phi$ interface models. Probab. Theory Related Fields 117 (1) (2000) 49–111.
  • [9] F. J. Dyson. General theory of spin-wave interactions. Phys. Rev. 102 (5) (1956) 1217.
  • [10] J. Fröhlich, B. Simon and T. Spencer. Infrared bounds, phase transitions and continuous symmetry breaking. Comm. Math. Phys. 50 (1) (1976) 79–95.
  • [11] J. Fröhlich and T. Spencer. The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Comm. Math. Phys. 81 (4) (1981) 527–602.
  • [12] T. Funaki and H. Spohn. Motion by mean curvature from the Ginzburg-Landau interface model. Comm. Math. Phys. 185 (1) (1997) 1–36.
  • [13] K. Gawedzki and A. Kupiainen. A rigorous block spin approach to massless lattice theories. Comm. Math. Phys. 77 (1) (1980) 31–64.
  • [14] G. Giacomin, S. Olla and H. Spohn. Equilibrium fluctuations for $\nabla\phi$ interface model. Ann. Probab. 29 (2001) 1138–1172.
  • [15] B. Helffer and J. Sjöstrand. On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74 (1–2) (1994) 349–409.
  • [16] I. S. Helland. Central limit theorems for martingales with discrete or continuous time. Scand. J. Stat. 9 (1982) 79–94.
  • [17] C. Kipnis and S. S. Varadhan. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 (1) (1986) 1–19.
  • [18] J. M. Kosterlitz and D. J. Thouless. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, Solid State Phys. 6 (7) (1973) 1181.
  • [19] O. A. McBryan and T. Spencer. On the decay of correlations in $\operatorname{SO}(n)$-symmetric ferromagnets. Comm. Math. Phys. 53 (3) (1977) 299–302.
  • [20] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17 (22) (1966) 1133.
  • [21] J. Miller. Fluctuations for the Ginzburg-Landau $\nabla\phi$ interface model on a bounded domain. Comm. Math. Phys. 308 (3) (2011) 591–639.
  • [22] A. Naddaf and T. Spencer. On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys. 183 (1) (1997) 55–84.
  • [23] O. Penrose and J. L. Lebowitz. On the exponential decay of correlation functions. Comm. Math. Phys. 39 (3) (1974) 165–184.
  • [24] S. B. Shlosman. The method of reflection positivity in the mathematical theory of first-order phase transitions. Russian Math. Surveys 41 (3) (1986) 83–134.