Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Liouville quantum gravity on the unit disk

Yichao Huang, Rémi Rhodes, and Vincent Vargas

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Our purpose is to pursue the rigorous construction of Liouville Quantum Field Theory on Riemann surfaces initiated by F. David, A. Kupiainen and the last two authors in the context of the Riemann sphere and inspired by the 1981 seminal work by Polyakov. In this paper, we investigate the case of simply connected domains with boundary. We also make precise conjectures about the relationship of this theory to scaling limits of random planar maps with boundary conformally embedded onto the disk.

Résumé

Notre but est d’étendre la construction rigoureuse de la Théorie Quantique des Champs de Liouville sur les surfaces de Riemann, initiée par F. David, A. Kupiainen et les deux derniers auteurs dans le contexte de la sphère de Riemann et inspirée par le travail pionnier de Polyakov en 1981. Dans ce papier nous étudions la théorie dans le cas de domaines simplement connexes à bord. Nous formulons également des conjectures précises sur la relation entre cette théorie et les limites d’échelle des grandes cartes planaires aléatoires à bord conformément plongées dans le disque unité.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 54, Number 3 (2018), 1694-1730.

Dates
Received: 2 October 2015
Revised: 27 June 2017
Accepted: 9 July 2017
First available in Project Euclid: 11 July 2018

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1531296033

Digital Object Identifier
doi:10.1214/17-AIHP852

Mathematical Reviews number (MathSciNet)
MR3825895

Zentralblatt MATH identifier
06976089

Subjects
Primary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65] 81T40: Two-dimensional field theories, conformal field theories, etc. 81T20: Quantum field theory on curved space backgrounds

Keywords
Liouville Quantum Gravity Quantum field theory Gaussian multiplicative chaos KPZ formula KPZ scaling laws Polyakov formula Conformal anomaly

Citation

Huang, Yichao; Rhodes, Rémi; Vargas, Vincent. Liouville quantum gravity on the unit disk. Ann. Inst. H. Poincaré Probab. Statist. 54 (2018), no. 3, 1694--1730. doi:10.1214/17-AIHP852. https://projecteuclid.org/euclid.aihp/1531296033


Export citation

References

  • [1] J. Acosta. Tightness of the recentered maximum of log-correlated Gaussian fields. Electron. J. Probab. 19 (89) (2014) 1–25.
  • [2] R. Allez, R. Rhodes and V. Vargas. Lognormal $\star$-scale invariant random measures. Probab. Theory Related Fields 155 (2013) 751–788.
  • [3] J. Aru, Y. Huang and X. Sun. Two perspectives of the 2D unit area quantum sphere and their equivalence. Comm. Math. Phys. 356 (2017) 261–283.
  • [4] A. Ayache and Y. Xiao. Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets, asymptotic properties and Hausdorff dimensions of fractional Brownian sheets. J. Fourier Anal. Appl. 11 (4) (2005) 407–439.
  • [5] J. Bouttier and E. Guitter. Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop. J. Phys. A 42, 465208 (2009).
  • [6] N. Curien and G. Miermont. Uniform infinite planar quadrangulation with a boundary. Random Structures Algorithms 47 (2015) 30–58.
  • [7] F. David. Conformal field theories coupled to 2-d gravity in the conformal gauge. Modern Phys. Lett. A 3 (1988) 1651–1656.
  • [8] F. David, A. Kupiainen, R. Rhodes and V. Vargas. Liouville quantum gravity on the Riemann sphere. Comm. Math. Phys. 342 (2016) 869–907.
  • [9] F. David, R. Rhodes and V. Vargas. Liouville quantum gravity on complex tori. J. Math. Phys. 57, 022302 (2016).
  • [10] J. Distler and H. Kawai. Conformal field theory and 2-d quantum gravity or who’s afraid of Joseph Liouville? Nuclear Phys. B 321 (1989) 509–517.
  • [11] J. Dubédat. SLE and the free field: Partition functions and couplings. J. Amer. Math. Soc. 22 (4) (2009) 995–1054.
  • [12] B. Duplantier, J. Miller and S. Sheffield. Liouville quantum gravity as mating of trees. Available at arXiv:1409.7055.
  • [13] B. Duplantier, R. Rhodes, S. Sheffield and V. Vargas. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab. 42 (5) (2014) 1769–1808.
  • [14] B. Duplantier, R. Rhodes, S. Sheffield and V. Vargas. Renormalization of critical Gaussian multiplicative chaos and KPZ formula. Comm. Math. Phys. 330 (2014) 283–330.
  • [15] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math. 185 (2) (2011) 333–393.
  • [16] C. Garban, R. Rhodes and V. Vargas. On the heat kernel and the Dirichlet form of Liouville Brownian motion. Electron. J. Probab. 19 (95) (2014) 1–25.
  • [17] K. Gawedzki. Lectures on conformal field theory. In Quantum Fields and Strings: A Course for Mathematicians, Vols. 1, 2 727–805. Princeton, NJ, 1996/1997. Amer. Math. Soc., Providence, RI, 1999.
  • [18] T. Gneiting. Criteria of Polya type for radial positive definite functions. Proc. Amer. Math. Soc. 129 (8) (2001) 2309–2318.
  • [19] C. Guillarmou, R. Rhodes and V. Vargas. Liouville Quantum Gravity and Polyakov’s formulation of 2d string theory in genus $g\geq2$. Available at arXiv:1607.08467.
  • [20] D. Harlow, J. Maltz and E. Witten. Analytic continuation of Liouville theory. J. High Energy Phys. 2011 (2011) 71.
  • [21] J.-P. Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (2) (1985) 105–150.
  • [22] V. G. Knizhnik, A. M. Polyakov and A. B. Zamolodchikov. Fractal structure of 2D-quantum gravity. Modern Phys. Lett. A 3 (8) (1988) 819–826.
  • [23] T. Madaule. Convergence in law for the branching random walk seen from its tip. J. Theor. Probab. (2015).
  • [24] Y. Nakayama. Liouville field theory: A decade after the revolution. Internat. J. Modern Phys. A 19 (2004) 2771–2930.
  • [25] A. M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett. B 103 (1981) 207–210.
  • [26] Rhodes and R. Vargas V. KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15 (2011) 358.
  • [27] R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: A review. Probab. Surv. 11 (2014) 315–392.
  • [28] R. Rhodes and V. Vargas. Liouville Brownian motion at criticality. Potential Anal. 43 (2) (2015) 149–197.
  • [29] R. Rhodes and V. Vargas. Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity. To appear in Les Houches summer school proceedings. Available at arXiv:1602.07323.
  • [30] R. Robert and V. Vargas. Gaussian multiplicative chaos revisited. Ann. Probab. 38 (2010) 605–631.
  • [31] A. Shamov. On Gaussian multiplicative chaos. J. Funct. Anal. 270 (9) (2016) 3224–3261.
  • [32] S. Sheffield. Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 (2007) 521–541.
  • [33] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44 (5) (2016) 3474–3545.