Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

$\operatorname{ASEP}(q,j)$ converges to the KPZ equation

Ivan Corwin, Hao Shen, and Li-Cheng Tsai

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We show that a generalized Asymmetric Exclusion Process called $\operatorname{ASEP}(q,j)$ introduced in (Probab. Theory Related Fields 166 (2016) 887–933). converges to the Cole–Hopf solution to the KPZ equation under weak asymmetry scaling.


Nous montrons qu’une généralisation du processus d’exclusion asymétrique appelée $\operatorname{ASEP}(q,j)$, introduite dans (Probab. Theory Related Fields 166 (2016) 887–933), converge sous faible asymétrie vers la solution de l’équation KPZ au sens de Cole–Hopf.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 54, Number 2 (2018), 995-1012.

Received: 3 October 2016
Revised: 31 December 2016
Accepted: 17 March 2017
First available in Project Euclid: 25 April 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H15: Stochastic partial differential equations [See also 35R60] 35R60: Partial differential equations with randomness, stochastic partial differential equations [See also 60H15] 82C22: Interacting particle systems [See also 60K35]

$\operatorname{ASEP}(q,j)$ Gärtner transformation KPZ equation


Corwin, Ivan; Shen, Hao; Tsai, Li-Cheng. $\operatorname{ASEP}(q,j)$ converges to the KPZ equation. Ann. Inst. H. Poincaré Probab. Statist. 54 (2018), no. 2, 995--1012. doi:10.1214/17-AIHP829.

Export citation


  • [1] T. Alberts, K. Khanin and J. Quastel. Intermediate disorder regime for directed polymers in dimension $1+1$. Phys. Rev. Lett. 105 (9) (2010) 090603. DOI:10.1103/PhysRevLett.105.090603.
  • [2] T. Alberts, K. Khanin and J. Quastel. The intermediate disorder regime for directed polymers in dimension $1+1$. Ann. Probab. 42 (3) (2014) 1212–1256. DOI:10.1214/13-AOP858.
  • [3] G. Amir, I. Corwin and J. Quastel. Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions. Comm. Pure Appl. Math. 64 (4) (2011) 466–537. DOI:10.1002/cpa.20347.
  • [4] L. Bertini and G. Giacomin. Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183 (3) (1997) 571–607. DOI:10.1007/s002200050044.
  • [5] G. Carinci, C. Giardinà, F. Redig and T. Sasamoto. Asymmetric stochastic transport models with $U_{q}(\mathfrak{su}(1,1))$ symmetry. J. Stat. Phys. 163 (2) (2016) 239–279. DOI:10.1007/s10955-016-1473-4.
  • [6] G. Carinci, C. Giardinà, F. Redig and T. Sasamoto. A generalized asymmetric exclusion process with $U_{q}(\mathfrak{sl}_{2})$ stochastic duality. Probab. Theory Related Fields 166 (3–4) (2016) 887–933. DOI:10.1007/s00440-015-0674-0.
  • [7] I. Corwin and L. Petrov. Stochastic higher spin vertex models on the line. Comm. Math. Phys. 343 (2) (2016) 651–700. DOI:10.1007/s00220-015-2479-5.
  • [8] I. Corwin and L.-C. Tsai. KPZ equation limit of higher-spin exclusion processes. Ann. Probab. 45 (3) (2017) 1771–1798.
  • [9] A. Dembo and L.-C. Tsai. Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation. Comm. Math. Phys. 341 (1) (2016) 219–261. DOI:10.1007/s00220-015-2527-1.
  • [10] J. Diehl, M. Gubinelli and N. Perkowski. The Kardar–Parisi–Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions. Comm. Math. Phys. 354 (2) (2017) 549–589.
  • [11] P. Dittrich and J. Gärtner. A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151 (1) (1991) 75–93.
  • [12] T. Franco, P. Gonçalves and M. Simon. Crossover to the stochastic Burgers equation for the WASEP with a slow bond. Comm. Math. Phys. 346 (3) (2016) 801–838. DOI:10.1007/s00220-016-2607-x.
  • [13] J. Gärtner. Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stochastic Process. Appl. 27 (2) (1988) 233–260. DOI:10.1016/0304-4149(87)90040-8.
  • [14] P. Gonçalves and M. Jara. Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212 (2) (2014) 597–644. DOI:10.1007/s00205-013-0693-x.
  • [15] P. Gonçalves and M. Jara. Stochastic Burgers equation from long range exclusion interactions, 2016. Arxiv preprint. Available at arXiv:1606.06655.
  • [16] P. Gonçalves, M. Jara and S. Sethuraman. A stochastic Burgers equation from a class of microscopic interactions. Ann. Probab. 43 (1) (2015) 286–338.
  • [17] P. Gonçalves, M. Jara and M. Simon. Second order Boltzmann–Gibbs principle for polynomial functions and applications. J. Stat. Phys. 166 (1) (2017) 90–113. DOI:10.1007/s10955-016-1686-6.
  • [18] M. Gubinelli and M. Jara. Regularization by noise and stochastic Burgers equations. Stoch. Partial Differ. Equ., Anal. Computat. 1 (2) (2013) 325–350. DOI:10.1007/s40072-013-0011-5.
  • [19] M. Gubinelli and N. Perkowski. Energy solutions of KPZ are unique, 2015. Arxiv preprint. Available at arXiv:1508.07764.
  • [20] M. Gubinelli and N. Perkowski. Lectures on Singular Stochastic PDEs. Ensaios Matemáticos [Mathematical Surveys] 29. Sociedade Brasileira de Matemática, Rio de Janeiro, 2015.
  • [21] M. Gubinelli and N. Perkowski. The Hairer–Quastel universality result in equilibrium, 2016. ArXiv preprint. Available at arXiv:1602.02428.
  • [22] M. Gubinelli and N. Perkowski. KPZ reloaded. Comm. Math. Phys. 349 (1) (2017) 165–269. DOI:10.1007/s00220-016-2788-3.
  • [23] M. Hairer and J. Quastel. A class of growth models rescaling to KPZ, 2015. ArXiv preprint. Available at arXiv:1512.07845.
  • [24] M. Hairer and H. Shen. A central limit theorem for the KPZ equation, 2015. ArXiv preprint. Available at arXiv:1507.01237.
  • [25] C. Labbé. On the scaling limits of weakly asymmetric bridges, 2016. ArXiv preprint. Available at arXiv:1609.05617.
  • [26] C. Labbé. Weakly asymmetric bridges and the KPZ equation, 2016. ArXiv preprint. Available at arXiv:1603.03560.
  • [27] T. Liggett. Interacting Particle Systems. Springer, Berlin, 2012.
  • [28] T. Sasamoto and H. Spohn. Superdiffusivity of the 1D lattice Kardar–Parisi–Zhang equation. J. Stat. Phys. 137 (5–6) (2009) 917–935. DOI:10.1007/s10955-009-9831-0.