Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Joint exceedances of random products

Anja Janßen and Holger Drees

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We analyze the joint extremal behavior of $n$ random products of the form $\prod_{j=1}^{m}X_{j}^{a_{ij}}$, $1\leq i\leq n$, for non-negative, independent regularly varying random variables $X_{1},\ldots,X_{m}$ and general coefficients $a_{ij}\in\mathbb{R}$. Products of this form appear for example if one observes a linear time series with gamma type innovations at $n$ points in time. We combine arguments of linear optimization and a generalized concept of regular variation on cones to show that the asymptotic behavior of joint exceedance probabilities of these products is determined by the solution of a linear program related to the matrix $\mathbf{A}=(a_{ij})$.


Nous étudions le comportement extrémal multivarié de $n$ produits aléatoires de la forme $\prod_{j=1}^{m}X_{j}^{a_{ij}}$, $1\leq i\leq n$, pour des variables aléatoires positives, indépendantes et identiquement distribuées $X_{1},\ldots,X_{m}$ et des coefficients $a_{ij}\in\mathbb{R}$ quelconques. De tels produits apparaissent notamment lorsqu’on observe un échantillon de taille $n$ issu d’une série temporelle linéaire dont les innovations sont de type gamma. En combinant des arguments d’optimisation linéaire et le concept de variations régulières étendu à des cônes, nous montrons que le comportement asymptotique des probabilités de dépassement de seuil multiples pour de tels produits est déterminé par la solution d’un problème de programmation linéaire associé à la matrice $\mathbf{A}=(a_{ij})$.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 54, Number 1 (2018), 437-465.

Received: 4 August 2015
Revised: 3 November 2016
Accepted: 27 November 2016
First available in Project Euclid: 19 February 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G70: Extreme value theory; extremal processes
Secondary: 60B10: Convergence of probability measures 28A33: Spaces of measures, convergence of measures [See also 46E27, 60Bxx]

Extreme value theory Linear programming M-convergence Random products Regular variation


Janßen, Anja; Drees, Holger. Joint exceedances of random products. Ann. Inst. H. Poincaré Probab. Statist. 54 (2018), no. 1, 437--465. doi:10.1214/16-AIHP811.

Export citation


  • [1] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge University Press, Cambridge, 1987.
  • [2] L. Breiman. On some limit theorems similar to the arc-sin law. Theory Probab. Appl. 10 (1965) 323–331.
  • [3] D. Cline. Infinite series of random variables with regularly varying tails. Technical Report, Inst. Appl. Math. Statist., Univ. British Columbia, 1983.
  • [4] P. Embrechts, E. Hashorva and T. Mikosch. Aggregation of log-linear risks. J. Appl. Probab. 51A (2014) 203–212.
  • [5] H. Hult and F. Lindskog. Regular variation for measures on metric spaces. Publ. Inst. Math. (Beograd) (N.S.) 80 (94) (2006) 121–140.
  • [6] A. Janßen and H. Drees. A stochastic volatility model with flexible extremal dependence structure. Bernoulli 22 (2016) 1448–1490.
  • [7] A. W. Ledford and J. Tawn. Modelling dependence within joint tail regions. J. R. Stat. Soc., B 59 (1997) 475–499.
  • [8] F. Lindskog, S. I. Resnick and J. Roy. Regularly varying measures on metric spaces: Hidden regular variation and hidden jumps. Probab. Surv. 11 (2014) 270–314.
  • [9] K. Maulik, S. I. Resnick and H. Rootzén. Asymptotic independence and a network traffic model. J. Appl. Probab. 39 (2002) 671–699.
  • [10] S. I. Resnick. Heavy-Tail Phenomena. Springer, New York, 2007.
  • [11] G. Sierksma. Linear and Integer Programming: Theory and Practice. Dekker, New York, 1996.