Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

A new computation of the critical point for the planar random-cluster model with $q\ge1$

Hugo Duminil-Copin, Aran Raoufi, and Vincent Tassion

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We present a new computation of the critical value of the random-cluster model with cluster weight $q\ge1$ on $\mathbb{Z}^{2}$. This provides an alternative approach to the result in (Probab. Theory Related Fields 153 (2012) 511–542). We believe that this approach has several advantages. First, most of the proof can easily be extended to other planar graphs with sufficient symmetries. Furthermore, it invokes RSW-type arguments which are not based on self-duality. And finally, it contains a new way of applying sharp threshold results which avoid the use of symmetric events and periodic boundary conditions. Some of the new methods presented in this paper have a larger scope than the planar random-cluster model, and may be useful to investigate sharp threshold phenomena for more general dependent percolation processes in arbitrary dimensions.


Nous proposons une nouvelle preuve du fait que le point critique du modèle de percolation de Fortuin–Kasteleyn sur le réseau carré vaut $\sqrt{q}/(1+\sqrt{q})$ lorsque $q\ge1$. Cette preuve est une alternative à la stratégie implémentée dans (Probab. Theory Related Fields 153 (2012) 511–542). Cette approche a plusieurs avantages. Tout d’abord, la grande majorité des arguments peuvent être généralisés aux autres graphes planaires (ayant suffisamment de symétries). De plus, elle n’invoque pas d’argument de type RSW basés sur l’auto-dualité du modèle. Enfin, elle repose sur une nouvelle façon d’appliquer les théorèmes de seuil qui n’utilise pas la symmétrie des évǹements de croisement et les conditions de bord périodiques. Certaines de ces nouvelles méthodes ont un champs d’application qui dépasse largement le cas du modèle de percolation de Fortuin–Kasteleyn et pourrait être utile pour prouver la décroissance exponentielles d’autres modèles de percolation dépendante.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 54, Number 1 (2018), 422-436.

Received: 27 May 2016
Revised: 21 November 2016
Accepted: 22 November 2016
First available in Project Euclid: 19 February 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B26: Phase transitions (general) 82B43: Percolation [See also 60K35]

Phase transition Random-cluster model Potts model Critical point Sharp phase transition


Duminil-Copin, Hugo; Raoufi, Aran; Tassion, Vincent. A new computation of the critical point for the planar random-cluster model with $q\ge1$. Ann. Inst. H. Poincaré Probab. Statist. 54 (2018), no. 1, 422--436. doi:10.1214/16-AIHP809.

Export citation


  • [1] V. Beffara and H. Duminil-Copin. The self-dual point of the two-dimensional random-cluster model is critical for $q\geq1$. Probab. Theory Related Fields 153 (3–4) (2012) 511–542.
  • [2] B. Bollobás and O. Riordan. The critical probability for random Voronoi percolation in the plane is $1/2$. Probab. Theory Related Fields 136 (3) (2006) 417–468.
  • [3] B. Bollobás and O. Riordan. A short proof of the Harris–Kesten theorem. Bull. Lond. Math. Soc. 38 (3) (2006) 470–484.
  • [4] J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson and N. Linial. The influence of variables in product spaces. Israel J. Math. 77 (1–2) (1992) 55–64.
  • [5] H. Duminil-Copin. Parafermionic Observables and Their Applications to Planar Statistical Physics Models. Ensaios Matematicos 25. Brazilian Mathematical Society, 2013.
  • [6] H. Duminil-Copin and I. Manolescu. The phase transitions of the planar random-cluster and Potts models with q larger than 1 are sharp. Probab. Theory Related Fields 164 (3-4) (2016) 865–892.
  • [7] H. Duminil-Copin, V. Sidoravicius and V. Tassion. Absence of infinite cluster for critical Bernoulli percolation on slabs. Comm. Pure Appl. Math. 69 (7) (2016) 1397–1411.
  • [8] C. M. Fortuin and P. W. Kasteleyn. On the random-cluster model. I. Introduction and relation to other models. Physica 57 (1972) 536–564.
  • [9] A. Gandolfi and H. Kesten. Greedy lattice animals. II. Linear growth. Ann. Appl. Probab. 4 (1) (1994) 76–107.
  • [10] B. Graham and G. Grimmett. Sharp thresholds for the random-cluster and Ising models. Ann. Appl. Probab. 21 (1) (2011) 240–265.
  • [11] B. T. Graham and G. R. Grimmett. Influence and sharp-threshold theorems for monotonic measures. Ann. Probab. 34 (5) (2006) 1726–1745.
  • [12] G. Grimmett. The Random-Cluster Model. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 333. Springer-Verlag, Berlin, 2006.
  • [13] G. R. Grimmett and M. S. T. Piza. Decay of correlations in random-cluster models. Comm. Math. Phys. 189 (2) (1997) 465–480.
  • [14] J. Kahn, G. Kalai and N. Linial. The influence of variables on Boolean functions. In Foundations of Computer Science, 1988, 29th Annual Symposium on 68–80. IEEE, 1988.
  • [15] L. Russo. An approximate zero–one law. Z. Wahrscheinlichkeitstheor. Verw. Geb. 61 (1) (1982) 129–139.
  • [16] M. Talagrand. On Russo’s approximate zero–one law. Ann. Probab. 22 (1994) 1576–1587.
  • [17] V. Tassion. Crossing probabilities for Voronoi percolation. Ann. Probab. 44 (5) (2016) 3385–3398.