Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

A functional limit theorem for irregular SDEs

Stefan Ankirchner, Thomas Kruse, and Mikhail Urusov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $X_{1},X_{2},\ldots$ be a sequence of i.i.d. real-valued random variables with mean zero, and consider the scaled random walk of the form $Y^{N}_{k+1}=Y^{N}_{k}+a_{N}(Y^{N}_{k})X_{k+1}$, where $a_{N}:\mathbb{R}\to\mathbb{R}_{+}$. We show, under mild assumptions on the law of $X_{i}$, that one can choose the scale factor $a_{N}$ in such a way that the process $(Y^{N}_{\lfloor Nt\rfloor})_{t\in\mathbb{R}_{+}}$ converges in distribution to a given diffusion $(M_{t})_{t\in\mathbb{R}_{+}}$ solving a stochastic differential equation with possibly irregular coefficients, as $N\to\infty$. To this end we embed the scaled random walks into the diffusion $M$ with a sequence of stopping times with expected time step $1/N$.


Soit $X_{1},X_{2},\ldots$ une suite de variables aléatoires indépendantes avec espérance $E(X_{i})=0$, et $Y^{N}_{k+1}=Y^{N}_{k}+a_{N}(Y^{N}_{k})X_{k+1}$ une marche aléatoire renormalisée avec une fonction $a_{N}:\mathbb{R}\to\mathbb{R}_{+}$. On montre, sous certaines conditions légères sur la loi de $X_{i}$, que l’on peut choisir le facteur $a_{N}$ d’une facon que $(Y^{N}_{\lfloor Nt\rfloor})_{t\in\mathbb{R}_{+}}$ converge en loi, quand $N$ tend vers l’infini, vers une diffusion $(M_{t})_{t\in\mathbb{R}_{+}}$ étant la solution d’une équation differentielle stochastique avec des coefficients irréguliers. À cet effet, nous plongeons la marche aléatoire renormalisée dans la diffusion $M$ par une suite de temps d’arrêt ayant un pas de temps avec espérance $1/N$.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 53, Number 3 (2017), 1438-1457.

Received: 15 July 2015
Revised: 27 February 2016
Accepted: 21 April 2016
First available in Project Euclid: 21 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F17: Functional limit theorems; invariance principles 60J60: Diffusion processes [See also 58J65] 65C30: Stochastic differential and integral equations

Stochastic differential equations Irregular diffusion coefficient Weak law of large numbers for u.i. arrays Weak convergence of processes Skorokhod embedding problem


Ankirchner, Stefan; Kruse, Thomas; Urusov, Mikhail. A functional limit theorem for irregular SDEs. Ann. Inst. H. Poincaré Probab. Statist. 53 (2017), no. 3, 1438--1457. doi:10.1214/16-AIHP760.

Export citation


  • [1] S. Ankirchner, D. Hobson and P. Strack. Finite, integrable and bounded time embeddings for diffusions. Bernoulli 21 (2) (2015) 1067–1088.
  • [2] S. Athreya, W. Löhr and A. Winter. Invariance principle for variable speed random walks on trees. Ann. Probab. 45 (2017) 625–667.
  • [3] M. D. Donsker. An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc. 6 (1951) 1–12.
  • [4] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
  • [5] H. J. Engelbert and W. Schmidt. On solutions of one-dimensional stochastic differential equations without drift. Z. Wahrsch. Verw. Gebiete 68 (3) (1985) 287–314.
  • [6] A. Gut. The weak law of large numbers for arrays. Statist. Probab. Lett. 14 (1) (1992) 49–52.
  • [7] D. G. Hobson. The Skorokhod embedding problem and model independent bounds for option prices. In Paris-Princeton Lectures on Mathematical Finance 2010 267–318. Lecture Notes in Math. 2003. Springer, Berlin, 2011.
  • [8] D. H. Hong and K. S. Oh. On the weak law of large numbers for arrays. Statist. Probab. Lett. 22 (1) (1995) 55–57.
  • [9] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer-Verlag, New York, 1991.
  • [10] P. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations, 23. Springer, Berlin, 1992.
  • [11] D. Landers and L. Rogge. Laws of large numbers for uncorrelated Cesàro uniformly integrable random variables. Sankhya, Ser. A 59 (3) (1997) 301–310.
  • [12] D. Landers and L. Rogge. Identically distributed uncorrelated random variables not fulfilling the WLLN. Bull. Korean Math. Soc. 38 (3) (2001) 605–610.
  • [13] J. Obloj. The Skorokhod embedding problem and its offspring. Probab. Surv. 1 (September) (2004) 321–392.
  • [14] Y. V. Prohorov. Convergence of random processes and limit theorems in probability theory. Teor. Veroyatn. Primen. 1 (1956) 177–238.
  • [15] A. V. Skorokhod. Studies in the Theory of Random Processes. Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.
  • [16] C. Stone. Limit theorems for random walks, birth and death processes, and diffusion processes. Illinois J. Math. 7 (1963) 638–660.
  • [17] S. H. Sung. Weak law of large numbers for arrays. Statist. Probab. Lett. 38 (2) (1998) 101–105.
  • [18] S. H. Sung, T. C. Hu and A. Volodin. On the weak laws for arrays of random variables. Statist. Probab. Lett. 72 (4) (2005) 291–298.