Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Large time asymptotics for the parabolic Anderson model driven by spatially correlated noise

Jingyu Huang, Khoa Lê, and David Nualart

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper we study the linear stochastic heat equation, also known as parabolic Anderson model, in multidimension driven by a Gaussian noise which is white in time and it has a correlated spatial covariance. Examples of such covariance include the Riesz kernel in any dimension and the covariance of the fractional Brownian motion with Hurst parameter $H\in(\frac{1}{4},\frac{1}{2}]$ in dimension one. First we establish the existence of a unique mild solution and we derive a Feynman–Kac formula for its moments using a family of independent Brownian bridges and assuming a general integrability condition on the initial data. In the second part of the paper we compute Lyapunov exponents, lower and upper exponential growth indices in terms of a variational quantity. The last part of the paper is devoted to study the phase transition property of the Anderson model.


Dans cet article nous étudions l’équation de la chaleur linéaire stochastique multidimensionnelle, connue aussi comme model d’Anderson parabolique, perturbée par un bruit gaussien qui est blanc en temps et qui a une covariance corrélée en espace. Le noyau de Riesz en dimension quelconque et la covariance du mouvement Brownien fractionnaire avec paramètre de Hurst $H\in(\frac{1}{4},\frac{1}{2}]$ en une dimension, sont des examples d’une telle covariance. D’abord, on établit l’existence d’une solution d’evolution unique et on obtient une formule de Feynman–Kac pour les moments de la solution, en utilisant une famille de ponts browniens indépendants et en supposant une condition générale d’intégrabilité sur la condition initiale. Dans la deuxième partie du travail nous calculons les exposants de Lyapunov et les exposants supérieur et inférieur de croissance exponentielle en fonction d’une quantité variationnelle. La dernière partie du travail est consacré à l’etude de la transition de phase pour le model d’Anderson.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 53, Number 3 (2017), 1305-1340.

Received: 9 September 2015
Revised: 11 March 2016
Accepted: 30 March 2016
First available in Project Euclid: 21 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G15: Gaussian processes 60H07: Stochastic calculus of variations and the Malliavin calculus 60H15: Stochastic partial differential equations [See also 35R60] 60F10: Large deviations 65C30: Stochastic differential and integral equations

Stochastic heat equation Brownian bridge Feynman–Kac formula Exponential growth index Phase transition


Huang, Jingyu; Lê, Khoa; Nualart, David. Large time asymptotics for the parabolic Anderson model driven by spatially correlated noise. Ann. Inst. H. Poincaré Probab. Statist. 53 (2017), no. 3, 1305--1340. doi:10.1214/16-AIHP756.

Export citation


  • [1] R. M. Balan. The stochastic wave equation with multiplicative fractional noise: A Malliavin calculus approach. Potential Anal. 36 (1) (2012) 1–34.
  • [2] R. M. Balan, M. Jolis and L. Quer-Sardanyons. SPDEs with affine multiplicative fractional noise in space with index $\frac{1}{4}<H<\frac{1}{2}$. Electron. J. Probab. 20 (2015) Art. ID 54.
  • [3] L. Chen and R. C. Dalang. Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions. Ann. Probab. 43 (6) (2015) 3006–3051.
  • [4] L. Chen and K. Kim. Nonlinear stochastic heat equation driven by spatially colored noise: Moments and intermittency. Manuscript.
  • [5] X. Chen. Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs 157. American Mathematical Society, Providence, RI, 2010.
  • [6] X. Chen. Moment asymptotics for parabolic Anderson equation with fractional time-space noise: In Skorokhod regime. Ann. Inst. Henri Poincaré Probab. Stat. To appear.
  • [7] X. Chen. Precise intermittency for the parabolic Anderson equation with an $(1+1)$-dimensional time-space white noise. Ann. Inst. Henri Poincaré Probab. Stat. 51 (4) (2015) 1486–1499.
  • [8] X. Chen, Y. Hu, J. Song and F. Xing. Exponential asymptotics for time-space Hamiltonians. Ann. Inst. Henri Poincaré Probab. Stat. 51 (4) (2015) 1529–1561.
  • [9] X. Chen and T. V. Phan. Free energy in a mean field of Brownian particles. Preprint.
  • [10] D. Conus. Moments for the parabolic Anderson model: On a result by Hu and Nualart. Commun. Stoch. Anal. 7 (1) (2013) 125–152.
  • [11] D. Conus and D. Khoshnevisan. On the existence and position of the farthest peaks of a family of stochastic heat and wave equations. Probab. Theory Related Fields 152 (3–4) (2012) 681–701.
  • [12] R. Dalang. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4 (1999) Art. ID 6.
  • [13] R. Dalang and L. Quer-Sardanyons. Stochastic integrals for spde’s: A comparison. Expo. Math. 29 (1) (2011) 67–109.
  • [14] M. Foondun and E. Nualart. On the behaviour of stochastic heat equations on bounded domains. ALEA Lat. Am. J. Probab. Math. Stat. 12 (2) (2015) 551–571.
  • [15] Y. Hu, J. Huang, D. Nualart and S. Tindel. Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J. Probab. 20 (2015) Art. ID 55.
  • [16] Y. Hu, J. Huang, K. Lê, D. Nualart and S. Tindel. Stochastic heat equation with rough dependence in space. Preprint.
  • [17] Y. Hu and D. Nualart. Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields 143 (1–2) (2009) 285–328.
  • [18] J. Lőrinczi, F. Hiroshima and V. Betz. Feynman–Kac-Type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory. de Gruyter Studies in Mathematics 34. Walter de Gruyter & Co., Berlin, 2011.
  • [19] S. Nakao. On the spectral distribution of the Schrödinger operator with random potential. Jpn. J. Math. 3 (1) (1977) 111–139.
  • [20] J. M. Noble. Evolution equation with Gaussian potential. Nonlinear Anal. 28 (1) (1997) 103–135.
  • [21] D. Nualart. The Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications (New York). Springer-Verlag, Berlin, 2006.