Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Path-dependent infinite-dimensional SDE with non-regular drift: An existence result

David Dereudre and Sylvie Rœlly

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We establish in this paper the existence of weak solutions of infinite-dimensional shift invariant stochastic differential equations driven by a Brownian term. The drift function is very general, in the sense that it is supposed to be neither bounded or continuous, nor Markov. On the initial law we only assume that it admits a finite specific entropy and a finite second moment.

The originality of our method leads in the use of the specific entropy as a tightness tool and in the description of such infinite-dimensional stochastic process as solution of a variational problem on the path space. Our result clearly improves previous ones obtained for free dynamics with bounded drift.


Nous établissons, dans cet article, l’existence de solutions faibles pour un système infini-dimensionnel de diffusions browniennes. Le terme de dérive est véritablement général, au sens où il est supposé n’être ni borné, ni continu, ni Markovien. Nous supposons cependant que la loi initiale admet une entropie spécifique finie.

L’originalité de notre méthode consiste en l’utilisation de la bornitude de l’entropie spécifique comme critère de tension et en l’identification des solutions du système comme solutions d’un problème variationnel sur l’espace des trajectoires. Notre résultat améliore clairement ceux préexistants concernant des dynamiques libres perturbées par des dérives bornées.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 53, Number 2 (2017), 641-657.

Received: 19 October 2014
Revised: 31 August 2015
Accepted: 7 November 2015
First available in Project Euclid: 11 April 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H10: Stochastic ordinary differential equations [See also 34F05] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Infinite-dimensional SDE Non-Markov drift Non-regular drift Variational principle Specific entropy


Dereudre, David; Rœlly, Sylvie. Path-dependent infinite-dimensional SDE with non-regular drift: An existence result. Ann. Inst. H. Poincaré Probab. Statist. 53 (2017), no. 2, 641--657. doi:10.1214/15-AIHP728.

Export citation


  • [1] S. Albeverio and M. Röckner. Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms. Probab. Theory Related Fields 89 (1991) 347–386.
  • [2] M. Arriojas, Y. Hu, S.-E. Mohammed and G. Pap. A delayed Black and Scholes formula. Stoch. Anal. Appl. 25 (2007) 471–492.
  • [3] P. Cattiaux, S. Rœlly and H. Zessin. Une approche Gibbsienne des diffusions Browniennes infini-dimensionnelles. Probab. Theory Related Fields 104 (1996) 147–179.
  • [4] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992.
  • [5] P. Dai Pra. Large deviation and stationary measures for interacting particles systems. Stochastic Process. Appl. 48 (1993) 9–30.
  • [6] P. Dai Pra and S. Rœlly. An existence result for infinite-dimensional Brownian diffusions with non-regular and non-Markovian drift. Markov Process. Related Fields 10 (2004) 113–136.
  • [7] P. Dai Pra, S. Rœlly and H. Zessin. A Gibbs variational principle in space–time for infinite-dimensional diffusions. Probab. Theory Related Fields 122 (2002) 289–315.
  • [8] D. Dereudre. Existence of quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains. Adv. in Appl. Probab. 41 (2009) 664–681.
  • [9] D. Dereudre, R. Drouilhet and H.-O. Georgii. Existence of Gibbsian point processes with geometry-dependent interactions. Probab. Theory Related Fields 153 (2012) 643–670.
  • [10] J. D. Deuschel. Infinite-dimensional diffusion processes as Gibbs measures on $C[0,1]^{\mathbb{Z}^{d}}$. Probab. Theory Related Fields 76 (1987) 325–340.
  • [11] H. Doss and G. Royer. Processus de diffusion associé aux mesures de Gibbs $\mathbb{R}^{\mathbb{Z}^{d}}$. Z. Wahrsch. Verw. Gebiete 46 (1978) 107–124.
  • [12] H. Föllmer and A. Wakolbinger. Time reversal of infinite-dimensional diffusions. Stochastic Process. Appl. 22 (1986) 59–77.
  • [13] H.-O. Georgii. Gibbs Measures and Phase Transitions, 2nd edition. De Gruyter, Berlin, 2011.
  • [14] H.-O. Georgii and O. Häggström. Phase transition in continuum Potts models. Comm. Math. Phys. 181 (1996) 507–528.
  • [15] H.-O. Georgii, T. Schreiber and C. Thäle. Branching random tessellations with interaction: A thermodynamic view. Ann. Probab. 43 (4) (2015) 1892–1943.
  • [16] R. Lang. Unendlich-dimensionale Wienerprozesse mit Wechselwirkung. Z. Wahrsch. Verw. Gebiete 38 (1977) 55–72.
  • [17] G. Leha and G. Ritter. On solutions to stochastic differential equations with discontinuous drift in Hilbert space. Math. Ann. 270 (1985) 109–123.
  • [18] X. Mao. Stochastic Differential Equations and Their Applications. Horwood, Chichester, 1997.
  • [19] C. Preston. Random Fields. Lecture Notes in Mathematics 714. Springer, Berlin, 1976.
  • [20] F. Redig, S. Rœlly and W. Ruszel. Short-time Gibbsianness for infinite-dimensional diffusions with space–time interaction. J. Stat. Phys. 138 (2010) 1124–1144.
  • [21] D. W. Robinson and D. Ruelle. Mean entropy of states in classical statistical mechanics. Comm. Math. Phys. 5 (1967) 288–300.
  • [22] S. Rœlly and W. Ruszel. Propagation of Gibbsianness for infinite-dimensional diffusions with space-time interaction. Markov Process. Related Fields 20 (2014) 653–674.
  • [23] T. Shiga and A. Shimizu. Infinite dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ. 20 (3) (1980) 395–416.
  • [24] L. S. Tsimring and A. Pikovsky. Noise-induced dynamics in bistable systems with delay. Phys. Rev. Lett. 87 (2001) 250602.