Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

An $\mathrm{SLE}_{2}$ loop measure

Stéphane Benoist and Julien Dubédat

Full-text: Open access

Abstract

There is an essentially unique way to associate to any Riemann surface a measure on its simple loops, such that the collection of measures satisfy a strong conformal invariance property (see (J. Amer. Math. Soc. 21 (2008) 137–169)). These random loops are constructed as the boundary of Brownian loops, and so correspond in the zoo of statistical mechanics models to central charge $0$, or Schramm–Loewner Evolution (SLE) parameter $\kappa=8/3$. The goal of this paper is to construct a family of measures on simple loops on Riemann surfaces that satisfies a conformal covariance property, and that would correspond to SLE parameter $\kappa=2$ (central charge $-2$). On planar annuli, this loop measure was already built by Adrien Kassel and Rick Kenyon in (Random curves on surfaces induced from the Laplacian determinant (2012) ArXiv e-prints). We will give an alternative construction of this loop measure on planar annuli, investigate its conformal covariance, and finally extend this measure to general Riemann surfaces. This gives an example of a Malliavin–Kontsevich–Suhov loop measure (Tr. Mat. Inst. Steklova 258 (2007) 107–153) in non-zero central charge.

Résumé

Il y a une manière essentiellement unique d’associer à toute surface de Riemann une mesure sur ses boucles simples de telle sorte que la collection de mesures soit invariante conforme en un sens fort (voir (J. Amer. Math. Soc. 21 (2008) 137–169)). Ces boucles aléatoires peuvent être construites comme frontières de boucles browniennes, et correpondent donc, dans la classification des modèles de mécanique statistique à la valeur de charge centrale $0$, ou alternativement au paramètre d’évolution de Schramm–Loewner (SLE) $\kappa=8/3$. Dans cet article, nous construisons une famille de mesures sur les boucles simples dans les surfaces de Riemann qui est covariante conforme, et qui correpond à la valeur $2$ du paramètre SLE (ou de maniére équivalente, à la charge centrale $-2$). Cette mesure de boucles avait été précédemment construite dans les anneaux planaires par Adrien Kassel et Rick Kenyon (Random curves on surfaces induced from the Laplacian determinant (2012) ArXiv e-prints). Nous donnerons une construction alternative de cette mesure de boucles dans les anneaux planaires et étudierons ses propriétés de covariance conforme, avant d’étendre cette mesure à toute surface de Riemann. En particulier, cela donne un exemple de mesure de Malliavin–Kontsevich–Suhov (Tr. Mat. Inst. Steklova 258 (2007) 107–153) en charge centrale non nulle.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 52, Number 3 (2016), 1406-1436.

Dates
Received: 22 July 2014
Revised: 17 December 2014
Accepted: 8 April 2015
First available in Project Euclid: 28 July 2016

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1469723525

Digital Object Identifier
doi:10.1214/15-AIHP681

Mathematical Reviews number (MathSciNet)
MR3531714

Zentralblatt MATH identifier
1350.60087

Subjects
Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE) 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs

Keywords
SLE UST Loop Restriction

Citation

Benoist, Stéphane; Dubédat, Julien. An $\mathrm{SLE}_{2}$ loop measure. Ann. Inst. H. Poincaré Probab. Statist. 52 (2016), no. 3, 1406--1436. doi:10.1214/15-AIHP681. https://projecteuclid.org/euclid.aihp/1469723525


Export citation

References

  • [1] I. Benjamini, R. Lyons, Y. Peres and O. Schramm. Uniform spanning forests. Ann. Probab. 29 (1) (2001) 1–65.
  • [2] N. Berline, E. Getzler and M. Vergne. Heat Kernels and Dirac Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 298. Springer, Berlin, 1992.
  • [3] D. Chelkak and S. Smirnov. Discrete complex analysis on isoradial graphs. Adv. Math. 228 (3) (2011) 1590–1630.
  • [4] J. Dubédat. Duality of Schramm–Loewner evolutions. Ann. Sci. Éc. Norm. Supér. (4) 42 (5) (2009) 697–724.
  • [5] J. Dubédat. SLE and the free field: Partition functions and couplings. J. Amer. Math. Soc. 22 (2009) 995–1054.
  • [6] J. Dubédat. SLE and Virasoro representations: Localization. Comm. Math. Phys. 336 (2014) 695–760.
  • [7] H. M. Farkas and I. Kra. Riemann Surfaces, 2nd edition. Graduate Texts in Mathematics 71. Springer, New York, 1992.
  • [8] L. S. Field and G. F. Lawler. Reversed radial SLE and the Brownian loop measure. J. Stat. Phys. 150 (6) (2013) 1030–1062.
  • [9] D. Grieser. Notes on the heat kernel asymptotics, 2004. Available at http://www.staff.uni-oldenburg.de/daniel.grieser/wwwlehre/Schriebe/heat.pdf.
  • [10] J. M. Harris, J. L. Hirst and M. J. Mossinghoff. Combinatorics and Graph Theory, 2nd edition. Undergraduate Texts in Mathematics. Springer, New York, 2008.
  • [11] K. Izyurov. Critical Ising interfaces in multiply-connected domains. ArXiv e-prints, 2013.
  • [12] A. Kassel and R. Kenyon. Random curves on surfaces induced from the Laplacian determinant. ArXiv e-prints, 2012.
  • [13] M. Kontsevich and Y. Suhov. On Malliavin measures, SLE, and CFT. Tr. Mat. Inst. Steklova 258 (Anal. i Osob. Ch. 1) (2007) 107–153.
  • [14] G. Lawler, O. Schramm and W. Werner. Conformal restriction: The chordal case. J. Amer. Math. Soc. 16 (4) (2003) 917–955 (electronic).
  • [15] G. F. Lawler, O. Schramm and W. Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 (1B) (2004) 939–995.
  • [16] G. F. Lawler and W. Werner. The Brownian loop soup. Probab. Theory Related Fields 128 (4) (2004) 565–588.
  • [17] Y. Le Jan. Markov Paths, Loops and Fields. Lecture Notes in Mathematics 2026. Springer, Heidelberg, 2011. Lectures from the 38th Probability Summer School held in Saint-Flour, 2008, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School].
  • [18] T. Lindvall. On Strassen’s theorem on stochastic domination. Electron. Commun. Probab. 4 (1999) 51–59 (electronic).
  • [19] P. Malliavin. The canonic diffusion above the diffeomorphism group of the circle. C. R. Acad. Sci. Paris Sér. I Math. 329 (4) (1999) 325–329.
  • [20] H. P. McKean Jr. and I. M. Singer. Curvature and the eigenvalues of the Laplacian. J. Differential Geom. 1 (1) (1967) 43–69.
  • [21] B. Osgood, R. Phillips and P. Sarnak. Extremals of determinants of Laplacians. J. Funct. Anal. 80 (1) (1988) 148–211.
  • [22] C. Pommerenke. Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 299. Springer, Berlin, 1992.
  • [23] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000) 221–288.
  • [24] O. Schramm and D. B. Wilson. SLE coordinate changes. New York J. Math. 11 (2005) 659–669 (electronic).
  • [25] B. Simon. Trace Ideals and Their Applications, 2nd edition. Mathematical Surveys and Monographs 120. American Mathematical Society, Providence, RI, 2005.
  • [26] W. Werner. The conformally invariant measure on self-avoiding loops. J. Amer. Math. Soc. 21 (1) (2008) 137–169 (electronic).
  • [27] D. B. Wilson. Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996) 296–303. ACM, New York, 1996.
  • [28] D. Zhan. The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36 (2) (2008) 467–529.