Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Maximal displacement of critical branching symmetric stable processes

Steven P. Lalley and Yuan Shao

Full-text: Open access


We consider a critical continuous-time branching process (a Yule process) in which the individuals independently execute symmetric $\alpha$-stable random motions on the real line starting at their birth points. Because the branching process is critical, it will eventually die out, and so there is a well-defined maximal location $M$ ever visited by an individual particle of the process. We prove that the distribution of $M$ satisfies the asymptotic relation $P\{M\geq x\}\sim(2/\alpha)^{1/2}x^{-\alpha/2}$ as $x\rightarrow\infty$.


Nous considérons un processus de branchement en temps continu critique (processus de Yule) dont les individus suivent indépendamment un processus $\alpha$-stable symétrique réel issu de leur point de naissance. Le processus de branchement étant critique, il s’éteint presque surement et nous pouvons définir la valeur $M$ qui représente la position maximale jamais atteinte par un individu. Nous montrons que la distribution de $M$ satisfait l’estimée asymptotique suivante : $P\{M\ge x\}\sim (2/\alpha)^{1/2}x^{-\alpha/2}$.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 52, Number 3 (2016), 1161-1177.

Received: 16 July 2013
Revised: 12 September 2014
Accepted: 27 March 2015
First available in Project Euclid: 28 July 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Secondary: 60J15

Branching stable process Critical branching process Nonlinear convolution equation Feynman–Kac formula Fractional Laplacian


Lalley, Steven P.; Shao, Yuan. Maximal displacement of critical branching symmetric stable processes. Ann. Inst. H. Poincaré Probab. Statist. 52 (2016), no. 3, 1161--1177. doi:10.1214/15-AIHP677.

Export citation


  • [1] D. Aldous. The continuum random tree III. Ann. Probab. 21 (1993) 248–289.
  • [2] K. B. Athreya and P. E. Ney. Branching Processes. Die Grundlehren der mathematischen Wissenschaften 196. Springer, New York, 1972.
  • [3] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996.
  • [4] M. Dwass. The total progeny in a branching process and a related random walk. J. Appl. Probab. 6 (1969) 682–686.
  • [5] W. Feller. An Introduction to Probability Theory and Its Applications. Vol. II, 2nd edition. Wiley, New York, 1971.
  • [6] J. Fleischman and S. Sawyer. Maximum geographic range of a mutant allele considered as a subtype of a Brownian branching random field. Proc. Natl. Acad. Sci. USA 76 (2) (1979) 872–875.
  • [7] I. J. Good. The number of individuals in a cascade process. Proc. Cambridge Philos. Soc. 45 (1949) 360–363.
  • [8] J. W. Harris, S. C. Harris and A. E. Kyprianou. Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: One sided travelling-waves. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2005) 125–145.
  • [9] T. E. Harris. First passage and recurrence distributions. Trans. Amer. Math. Soc. 73 (1952) 471–486.
  • [10] H. Kesten. Branching random walk with a critical branching part. J. Theoret. Probab. 8 (4) (1995) 921–962.
  • [11] S. P. Lalley and Y. Shao. On the maximal displacement of a critical branching random walk. Probab. Theory Related Fields 162 (2015) 71–96.
  • [12] S. P. Lalley. Spatial epidemics: Critical behavior in one dimension. Probab. Theory Related Fields 144 (3–4) (2009) 429–469.
  • [13] J.-F. Le Gall. Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 1999.
  • [14] T.-Y. Lee. Some limit theorems for critical branching Bessel processes, and related semilinear differential equations. Probab. Theory Related Fields 84 (4) (1990) 505–520.
  • [15] A. G. Pakes. Some limit theorems for the total progeny of a branching process. Adv. in Appl. Probab. 3 (1971) 176–192.
  • [16] E. Perkins. Polar sets and multiple points for super-Brownian motion. Ann. Probab. 18 (1990) 453–491.
  • [17] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales. Vol. 1. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge, 2000. Foundations, Reprint of the second (1994) edition.
  • [18] V. M. Zolotarev. One-Dimensional Stable Distributions. Translations of Mathematical Monographs 65. Amer. Math. Soc., Providence, RI, 1986. Translated from the Russian by H. H. McFaden. Translation edited by Ben Silver.