Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Random directed forest and the Brownian web

Rahul Roy, Kumarjit Saha, and Anish Sarkar

Full-text: Open access


Consider the $d$ dimensional lattice $\mathbb{Z}^{d}$ where each vertex is open or closed with probability $p$ or $1-p$ respectively. An open vertex $\mathbf{u}:=(\mathbf{u}(1),\mathbf{u}(2),\ldots,\mathbf{u}(d))$ is connected by an edge to another open vertex which has the minimum $L_{1}$ distance among all the open vertices $\mathbf{x}$ with $\mathbf{x}(d)>\mathbf{u}(d)$. It is shown that this random graph is a tree almost surely for $d=2$ and $3$ and it is an infinite collection of disjoint trees for $d\geq4$. In addition, for $d=2$, we show that when properly scaled, the family of its paths converges in distribution to the Brownian web.


Nous considérons le réseau $\mathbb{Z}^{d}$ dont les sommets sont ouverts ou fermés, respectivement avec probabilité $p$ et $1-p$. Chaque sommet ouvert $\mathbf{u}=(\mathbf{u}(1),\mathbf{u}(2),\dots,\mathbf{u}(d))$ est connecté par une arête au sommet ouvert $\mathbf{x}$ le plus proche de lui, pour la distance $L_{1}$, et satisfaisant $\mathbf{x}(d)>\mathbf{u}(d)$. Nous montrons que le graphe aléatoire résultant est presque sûrement un arbre pour $d=2$ et $3$, et qu’il est une collection infinie d’arbres disjoints pour $d\geq4$. De plus, pour $d=2$, nous montrons que la famille de ses trajectoires correctement renormalisées converge en loi vers la toile Brownienne.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 52, Number 3 (2016), 1106-1143.

Received: 8 January 2014
Revised: 25 February 2015
Accepted: 25 February 2015
First available in Project Euclid: 28 July 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Markov chain Random walk Directed spanning forest Brownian web


Roy, Rahul; Saha, Kumarjit; Sarkar, Anish. Random directed forest and the Brownian web. Ann. Inst. H. Poincaré Probab. Statist. 52 (2016), no. 3, 1106--1143. doi:10.1214/15-AIHP672.

Export citation


  • [1] R. Arratia. Coalescing Brownian motions on the line. Ph.D. dissertation, Univ. Wisconsin, Madison, 1979.
  • [2] R. Arratia. Coalescing Brownian motions and the voter model on $\mathbb{Z}$. Unpublished manuscript, 1981.
  • [3] S. Asmussen. Applied Probability and Queues. Springer, New York, 2003.
  • [4] S. Athreya, R. Roy and A. Sarkar. Random directed trees and forest-drainage networks with dependence. Electron. J. Probab. 13 (2008) 2160–2189.
  • [5] F. Baccelli and C. Bordenave. The radial spanning tree of a Poisson point process. Ann. Appl. Probab. 17 (2007) 305–359.
  • [6] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999.
  • [7] C. F. Coletti, L. R. G. Fontes and E. S. Dias. Scaling limit for a drainage network model. J. Appl. Probab. 46 (2009) 1184–1197.
  • [8] D. Coupier and V. C. Tran. The 2D-directed spanning forest is almost surely a tree. Random Structures Algorithms 42 (2013) 59–72.
  • [9] R. Durrett. Probability: Theory and Examples. Cambridge Univ. Press, Cambridge, 2010.
  • [10] P. A. Ferrari, L. R. G. Fontes and X. Y. Wu. Two-dimensional Poisson trees converge to the Brownian web. Ann. Inst. Henri Poincaré Probab. Stat. 41 (2005) 851–858.
  • [11] P. A. Ferrari, C. Landim and H. Thorisson. Poisson trees, succession lines and coalescing random walks. Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 141–152.
  • [12] L. R. G. Fontes, M. Isopi, C. M. Newman and K. Ravishankar. The Brownian web: Characterization and convergence. Ann. Probab. 32 (2004) 2857–2883.
  • [13] S. Gangopadhyay, R. Roy and A. Sarkar. Random oriented trees: A model of drainage networks. Ann. Appl. Probab. 14 (2004) 1242–1266.
  • [14] H. Herrlich and G. E. Strecker. Category Theory. An Introduction. Heldermann Verlag, Lemgo, 2007.
  • [15] O. Kallenerg. Foundations of Modern Probability. Springer, New York, 2002.
  • [16] D. A. Levin, Y. Peres and E. L. Wilmer. Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI, 2009.
  • [17] C. M. Newman, K. Ravishankar and K. Sun. Convergence of coalescing nonsimple random walks to the Brownian web. Electron. J. Probab. 10 (2005) 21–60.
  • [18] I. Rodriguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge Univ. Press, New York, 1997.
  • [19] A. E. Scheidegger. A stochastic model for drainage pattern into an intramontane trench. Bull. Ass. Sci. Hydrol. 12 (1967) 15–20.
  • [20] B. Tóth and W. Werner. The true self-repelling motion. Probab. Theory Related Fields 111 (1998) 375–452.