Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Convergence rates for the full Gaussian rough paths

Peter Friz and Sebastian Riedel

Full-text: Open access


Under the key assumption of finite $\rho$-variation, $\rho\in\lbrack1,2)$, of the covariance of the underlying Gaussian process, sharp a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional Brownian motion (fBM), $\rho=1$ resp. $\rho=1/(2H)$, we recover and extend the respective results of (Trans. Amer. Math. Soc. 361 (2009) 2689–2718) and (Ann. Inst. Henri Poincasé Probab. Stat. 48 (2012) 518–550). In particular, we establish an a.s. rate $k^{-(1/\rho-1/2-\varepsilon)}$, any $\varepsilon>0$, for Wong–Zakai and Milstein-type approximations with mesh-size $1/k$. When applied to fBM this answers a conjecture in the afore-mentioned references.


Nous établissons des vitesses fines de convergence presque sûre pour les approximations des chemins rugueux Gaussiens, sous l’hypothèse que la fonction de covariance du processus Gaussien sous-jacent ait une $\rho$-variation finie, $\rho \in[1,2)$. Dans le cas du mouvement Brownien, respectivement du Brownien fractionnaire (fBM), pour lesquels $\rho=1$ resp. $\rho=1/(2H)$, ce résultat généralise les résultats respectifs de (Trans. Amer. Math. Soc. 361 (2009) 2689–2718) et (Ann. Inst. Henri Poincasé Probab. Stat. 48 (2012) 518–550).

Notamment, nous établissons le taux de convergence presque sure $k^{-(1/\rho-1/2-\varepsilon)}$, tout $\varepsilon>0$, pour les approximations de Wong–Zakai et de type Milstein avec pas de discrétisation $1/k$. Dans le cas du fBM, ce résultat résout une conjecture posée par les références ci-dessus.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 50, Number 1 (2014), 154-194.

First available in Project Euclid: 1 January 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H35: Computational methods for stochastic equations [See also 65C30] 60H10: Stochastic ordinary differential equations [See also 34F05] 60G15: Gaussian processes 65C30: Stochastic differential and integral equations

Gaussian processes Rough paths Numerical schemes Rates of convergence


Friz, Peter; Riedel, Sebastian. Convergence rates for the full Gaussian rough paths. Ann. Inst. H. Poincaré Probab. Statist. 50 (2014), no. 1, 154--194. doi:10.1214/12-AIHP507.

Export citation


  • [1] T. Cass and P. Friz. Densities for rough differential equations under Hoermander’s condition. Ann. of Math. (2) 171 (2010) 2115–2141.
  • [2] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108–140.
  • [3] A. M. Davie. Differential equations driven by rough paths: an approach via discrete approximation. Appl. Math. Res. Express. AMRX (2007) Art. ID abm009, 40.
  • [4] A. Deya, A. Neuenkirch and S. Tindel. A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 518–550.
  • [5] P. Friz and S. Riedel. Convergence rates for the full Brownian rough paths with applications to limit theorems for stochastic flows. Bull. Sci. Math. 135 (2011) 613–628.
  • [6] P. Friz and N. Victoir. Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 369–413.
  • [7] P. Friz and N. Victoir. Multidimensional Stochastic Processes as Rough Paths. Cambridge Univ. Press, Cambridge, 2010.
  • [8] P. Friz and N. Victoir. A note on higher dimensional $p$-variation. Electron. J. Probab. 16 (2011) 1880–1899.
  • [9] I. Gyöngy and A. Shmatkov. Rate of convergence of Wong–Zakai approximations for stochastic partial differential equations. Appl. Math. Optim. 54 (2006) 315–341.
  • [10] M. Hairer. Rough stochastic PDEs. Comm. Pure Appl. Math. 64 (2011) 1547–1585.
  • [11] K. Hara and M. Hino. Fractional order Taylor’s series and the neo-classical inequality. Bull. Lond. Math. Soc. 42 (2010) 467–477.
  • [12] Y. Hu and D. Nualart. Rough path analysis via fractional calculus. Trans. Amer. Math. Soc. 361 (2009) 2689–2718.
  • [13] S. Janson. Gaussian Hilbert Spaces. Cambridge Univ. Press, New York, 1997.
  • [14] T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoam. 14 (1998) 215–310.
  • [15] T. Lyons and Z. Qian. System Control and Rough Paths. Oxford Univ. Press, New York, 2002.
  • [16] A. Neuenkirch, S. Tindel and J. Unterberger. Discretizing the fractional Lévy area. Stochastic Process. Appl. 120 (2010) 223–254.
  • [17] C. Reutenauer. Free Lie Algebras. Clarendon Press, New York, 1993.
  • [18] N. Towghi. Multidimensional extension of L. C. Young’s inequality. JIPAM J. Inequal. Pure Appl. Math. 3 (2002) 13 (electronic).