Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Limit theorems for one and two-dimensional random walks in random scenery

Fabienne Castell, Nadine Guillotin-Plantard, and Françoise Pène

Full-text: Open access


Random walks in random scenery are processes defined by $Z_{n}:=\sum_{k=1}^{n}\xi_{X_{1}+\cdots+X_{k}}$, where $(X_{k},k\ge1)$ and $(\xi_{y},y\in{\mathbb{Z}}^{d})$ are two independent sequences of i.i.d. random variables with values in ${\mathbb{Z}}^{d}$ and $\mathbb{R}$ respectively. We suppose that the distributions of $X_{1}$ and $\xi_{0}$ belong to the normal basin of attraction of stable distribution of index $\alpha\in(0,2]$ and $\beta\in(0,2]$. When $d=1$ and $\alpha\ne1$, a functional limit theorem has been established in (Z. Wahrsch. Verw. Gebiete 50 (1979) 5–25) and a local limit theorem in (Ann. Probab. To appear). In this paper, we establish the convergence in distribution and a local limit theorem when $\alpha=d$ (i.e. $\alpha=d=1$ or $\alpha=d=2$) and $\beta\in(0,2]$. Let us mention that functional limit theorems have been established in (Ann. Probab. 17 (1989) 108–115) and recently in (An asymptotic variance of the self-intersections of random walks. Preprint) in the particular case when $\beta=2$ (respectively for $\alpha=d=2$ and $\alpha=d=1$).


Les promenades aléatoires en paysage aléatoire sont des processus définis par $Z_{n}:=\sum_{k=1}^{n}\xi_{X_{1}+\cdots+X_{k}}$, où $(X_{k},k\geq1)$ et $(\xi_{y},y\in\mathbb{Z}^{d})$ sont deux suites indépendantes de variables aléatoires i.i.d. à valeurs dans $\mathbb{Z}^{d}$ et $\mathbb{R}$ respectivement. Nous supposons que les lois de $X_{1}$ et $\xi_{0}$ appartiennent au domaine d’attraction normal de lois stables d’indice $\alpha\in(0,2]$ et $\beta\in(0,2]$. Quand $d=1$ et $\alpha\neq1$, un théorème limite fonctionnel a été prouvé dans (Z. Wahrsch. Verw. Gebiete 50 (1979) 5–25) et un théorème limite local dans (Ann. Probab. To appear). Dans ce papier, nous prouvons la convergence en loi et un théorème limite local quand $\alpha=d$ (i.e. $\alpha=d=1$ ou $\alpha=d=2$) et $\beta\in(0,2]$. Mentionnons que des théorèmes limites fonctionnels ont été établis dans (Ann. Probab. 17 (1989) 108–115) et récemment dans (An asymptotic variance of the self-intersections of random walks. Preprint) dans le cas particulier où $\beta=2$ (respectivement pour $\alpha=d=2$ et $\alpha=d=1$).

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 49, Number 2 (2013), 506-528.

First available in Project Euclid: 16 April 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems 60G52: Stable processes

Random walk in random scenery Local limit theorem Local time Stable process


Castell, Fabienne; Guillotin-Plantard, Nadine; Pène, Françoise. Limit theorems for one and two-dimensional random walks in random scenery. Ann. Inst. H. Poincaré Probab. Statist. 49 (2013), no. 2, 506--528. doi:10.1214/11-AIHP466.

Export citation


  • [1] G. Ben Arous and J. Cerný. Scaling limit for trap models on $\mathbb{Z}^d$. Ann. Probab. 35 (2007) 2356–2384.
  • [2] P. Billingsley. Convergence of Probability Measures. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1968.
  • [3] E. Bolthausen. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108–115.
  • [4] A. N. Borodin. A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad. Nauk SSSR 246 (1979) 786–787 (in Russian).
  • [5] A. N. Borodin. Limit theorems for sums of independent random variables defined on a transient random walk. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979) 17–29, 237, 244.
  • [6] L. Breiman. Probability. Addison-Wesley, Reading, 1968.
  • [7] F. Castell, N. Guillotin-Plantard, F. Pène and Br. Schapira. A local limit theorem for random walks in random scenery and on randomly oriented lattices. Ann. Probab. 39 (2011) 2079–2118.
  • [8] J. Cerný. Moments and distribution of the local time of a two-dimensional random walk. Stochastic Process. Appl. 117 (2007) 262–270.
  • [9] X. Chen. Moderate and small deviations for the ranges of one-dimensional random walks. J. Theor. Probab. 19 (2006) 721–739.
  • [10] G. Deligiannidis and S. Utev. An asymptotic variance of the self-intersections of random walks. Sib. Math. J. 52 (2011) 639–650.
  • [11] A. Dvoretzky and P. Erdös. Some problems on random walk in space. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 353–367. Univ. California Press, Berkeley, CA, 1950.
  • [12] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971.
  • [13] L. R. Fontes and P. Mathieu. On the dynamics of trap models in $\mathbb{Z}^d$. Preprint. Available at arXiv:1010.5418.
  • [14] H. Hennion and L. Hervé. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Mathematics 1766. Springer, Berlin, 2001.
  • [15] H. Kesten and F. Spitzer. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979) 5–25.
  • [16] P. Le Doussal. Diffusion in layered random flows, polymers, electrons in random potentials, and spin depolarization in random fields. J. Statist. Phys. 69 (1992) 917–954.
  • [17] J. F. Le Gall and J. Rosen. The range of stable random walks. Ann. Probab. 19 (1991) 650–705.
  • [18] S. Louhichi. Convergence rates in the strong law for associated random variables. Probab. Math. Statist. 20 (2000) 203–214.
  • [19] S. Louhichi and E. Rio. Convergence du processus de sommes partielles vers un processus de Lévy pour les suites associées. C. R. Acad. Sci. Paris 349 (2011) 89–91.
  • [20] G. Matheron and G. de Marsily. Is transport in porous media always diffusive? A counterxample. Water Resources Res. 16 (1980) 901–917.
  • [21] F. Spitzer. Principles of Random Walks. Van Nostrand, Princeton, NJ, 1964.
  • [22] A. V. Skorokhod. Limit theorems for stochastic processes. Theory Probab. Appl. 1 (1956) 261–290.
  • [23] W. Whitt. Stochastic Process Limits. Springer Series in Operations Research. Springer, New York, 2002.