Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

A Ciesielski–Taylor type identity for positive self-similar Markov processes

A. E. Kyprianou and P. Patie

Full-text: Open access

Abstract

The aim of this note is to give a straightforward proof of a general version of the Ciesielski–Taylor identity for positive self-similar Markov processes of the spectrally negative type which umbrellas all previously known Ciesielski–Taylor identities within the latter class. The approach makes use of three fundamental features. Firstly, a new transformation which maps a subset of the family of Laplace exponents of spectrally negative Lévy processes into itself. Secondly, some classical features of fluctuation theory for spectrally negative Lévy processes (see, e.g., [In Séminaire de Probabalités XXXVIII (2005) 16–29 Springer]) as well as more recent fluctuation identities for positive self-similar Markov processes found in [Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 667–684].

Résumé

L’objectif principal de ce papier est de donner une preuve d’une version générale de l’identité de Ciesielski–Taylor pour la famille de processus positifs auto-similaires markoviens de type spectralement négatif, ce qui nous permet d’unifier l’ensemble des résultats déjà connus sur ce sujet. Notre preuve s’appuie sur trois concepts importants. Tout d’abord, nous introduisons une famille de transformations qui associe l’ensemble des exposants de Laplace de processus de Lévy spectralement négatifs à lui-même. Ensuite, nous combinons des résultats empruntés à la théorie des fluctuations des processus de Lévy spectralement négatifs (voir e.g., [In Séminaire de Probabalités XXXVIII (2005) 16–29 Springer]) et à celles des processus positifs auto-similaires markoviens spectralement négatifs élaborées plus récemment par [Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 667–684].

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 47, Number 3 (2011), 917-928.

Dates
First available in Project Euclid: 23 June 2011

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1308834863

Digital Object Identifier
doi:10.1214/10-AIHP398

Mathematical Reviews number (MathSciNet)
MR2848004

Zentralblatt MATH identifier
1231.60031

Subjects
Primary: 60G18: Self-similar processes 60G51: Processes with independent increments; Lévy processes 60B52

Keywords
Positive self-similar Markov process Ciesielski–Taylor identity Spectrally negative Lévy process Bessel processes Stable processes Lamperti-stable processes

Citation

Kyprianou, A. E.; Patie, P. A Ciesielski–Taylor type identity for positive self-similar Markov processes. Ann. Inst. H. Poincaré Probab. Statist. 47 (2011), no. 3, 917--928. doi:10.1214/10-AIHP398. https://projecteuclid.org/euclid.aihp/1308834863


Export citation

References

  • [1] J. Bertoin. An extension of Pitman’s theorem for spectrally positive Lévy processes. Ann. Probab. 20 (1992) 1464–1483.
  • [2] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996.
  • [3] J. Bertoin and M. Yor. The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17 (2002) 389–400.
  • [4] P. Biane. Comparaison entre temps d’atteinte et temps de séjour de certaines diffusions réelles. In Séminaire de probabilités, XIX, 1983/84 291–296. Lecture Notes in Math. 1123. Springer, Berlin, 1985.
  • [5] M. E. Caballero and L. Chaumont. Conditioned stable Lévy processes and the Lamperti representation. J. Appl. Probab. 43 (2006) 967–983.
  • [6] M. E. Caballero and L. Chaumont. Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34 (2006) 1012–1034.
  • [7] Ph. Carmona, F. Petit and M. Yor. Beta–gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoamericana 14 (1998) 311–368.
  • [8] T. Chan, A. E. Kyprianou and M. Savov. Smoothness of scale functions for spectrally negative Lévy processes. Probab. Theory and Related fields (2010). To appear.
  • [9] L. Chaumont, A. E. Kyprianou and J. C. Pardo. Some explicit identities associated with positive self-similar Markov processes. Stochastic Process. Appl. 119 (2009) 980–1000.
  • [10] Z. Ciesielski and S. J. Taylor. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 (1962) 434–450.
  • [11] P. J. Fitzsimmons. On the existence of recurrent extension of positive self-similar Markov processes. Electron. Comm. Probab. 11 (2006) 230–241.
  • [12] R. K. Getoor and M. J. Sharpe. Excursions of Brownian motion and Bessel processes. Z. Wahrsch. Verw. Gebiete 47 (1979) 83–106.
  • [13] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006.
  • [14] A. E. Kyprianou and Z. Palmowski. A martingale review of some fluctuation theory for spectrally negative Lévy processes. In Séminaire de Probabilités XXXVIII 16–29. Lecture Notes in Math. 1857. Springer, Berlin, 2005.
  • [15] J. Lamperti. Semi-stable Markov processes. I. Z. Wahrsch. Verw. Gebiete 22 (1972) 205–225.
  • [16] N. N. Lebedev. Special Functions and Their Applications. Dover Publications, New York, 1972.
  • [17] P. Patie. Exponential functional of one-sided Lévy processes and self-similar continuous state branching processes with immigration. Bull. Sci. Math. 133 (2009) 355–382.
  • [18] P. Patie. Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes. Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 667–684.
  • [19] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44. Springer, New York, 1983.
  • [20] V. Rivero. Recurrent extensions of self-similar Markov processes and Cramér’s condition. Bernoulli 11 (2005) 471–509.
  • [21] M. Yor. Une explication du théorème de Ciesielski–Taylor. Ann. Inst. H. Poincaré Probab. Statist. 27 (1991) 201–213.