Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Cavity method in the spherical SK model

Dmitry Panchenko

Full-text: Open access


We develop a cavity method for the spherical Sherrington–Kirkpatrick model at high temperature and small external field. As one application we compute the limit of the covariance matrix for fluctuations of the overlap and magnetization.


Nous développons la méthode de la cavité pour le modèle sphérique de Sherrington–Kirkpatrick à haute température et champs externe faible. Nous illustrons la méthode par le calcul de la matrice de covariance des fluctuations des recouvrements et de la magnétisation.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 45, Number 4 (2009), 1020-1047.

First available in Project Euclid: 6 November 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)

Sherrington–Kirkpatrick model Cavity method


Panchenko, Dmitry. Cavity method in the spherical SK model. Ann. Inst. H. Poincaré Probab. Statist. 45 (2009), no. 4, 1020--1047. doi:10.1214/08-AIHP193.

Export citation


  • [1] Crisanti, A. and Sommers, H. J. The spherical p-spin interaction spin glass model: The statics. Z. Phys. B. Condensed Matter 83 (1992) 341–354.
  • [2] Guerra, F. and Toninelli, F. L. Central limit theorem for fluctuations in the high temperature region of the Sherrington–Kirkpatrick spin glass model. J. Math. Phys. 43 (2002) 6224–6237.
  • [3] Sherrington, D. and Kirkpatrick, S. Solvable model of a spin glass. Phys. Rev. Lett. 35 (1975) 1792–1796.
  • [4] Talagrand, M. Replica symmetry breaking and exponential inequalities for the Sherrington–Kirkpatrick model. Ann. Probab. 28 (2000) 1018–1062.
  • [5] Talagrand, M. Spin Glasses: A Challenge for Mathematicians. Cavity and Mean Field Models. Springer, Berlin, 2003.
  • [6] Talagrand, M. Free energy of the spherical mean field model. Probab. Theory Related Fields 134 (2006) 339–382.
  • [7] Talagrand, M. Large deviations, Guerra’s and A.S.S. schemes, and the Parisi hypothesis. J. Stat. Phys. 126 (2007) 837–894.