Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Large deviations for voter model occupation times in two dimensions

G. Maillard and T. Mountford

Full-text: Open access


We study the decay rate of large deviation probabilities of occupation times, up to time t, for the voter model η: ℤ2×[0, ∞)→{0, 1} with simple random walk transition kernel, starting from a Bernoulli product distribution with density ρ∈(0, 1). In [Probab. Theory Related Fields 77 (1988) 401–413], Bramson, Cox and Griffeath showed that the decay rate order lies in [log(t), log2(t)].

In this paper, we establish the true decay rates depending on the level. We show that the decay rates are log2(t) when the deviation from ρ is maximal (i.e., η≡0 or 1), and log(t) in all other situations. This answers some conjectures in [Probab. Theory Related Fields 77 (1988) 401–413] and confirms nonrigorous analysis carried out in [Phys. Rev. E 53 (1996) 3078–3087], [J. Phys. A 31 (1998) 5413–5429] and [J. Phys. A 31 (1998) L209–L215].


On étudie le taux de décroissance des probabilités de grandes déviations des temps d’occupation, jusqu’à l’instant t, du modèle du votant η: ℤ2×[0, ∞)→{0, 1} ayant le noyau de transition d’une marche aléatoire simple et partant d’une distribution produit de Bernoulli de paramètre ρ∈(0, 1). Dans [Probab. Theory Related Fields 77 (1988) 401–413], Bramson, Cox et Griffeath ont montré que l’ordre du taux de décroissance se situe dans [log(t), log2(t)].

Dans cet article, nous établissons les taux de décroissance exacts dépendant du niveau. On prouve que les taux de décroissance sont log2(t) lorsque la déviation de ρ est maximale (i.e., η≡0 ou 1), et log(t) dans toutes les autres situations. Ceci répond à une conjecture de [Probab. Theory Related Fields 77 (1988) 401–413] et confirme l’analyse non rigoureuse effectuée dans [Phys. Rev. E 53 (1996) 3078–3087], [J. Phys. A 31 (1998) 5413–5429] et [J. Phys. A 31 (1998) L209–L215].

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 45, Number 2 (2009), 577-588.

First available in Project Euclid: 29 April 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F10: Large deviations 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60J25: Continuous-time Markov processes on general state spaces

Voter model Large deviations


Maillard, G.; Mountford, T. Large deviations for voter model occupation times in two dimensions. Ann. Inst. H. Poincaré Probab. Statist. 45 (2009), no. 2, 577--588. doi:10.1214/08-AIHP178.

Export citation


  • [1] E. Ben-Naim, L. Frachebourg and P. L. Krapivsky. Coarsening and persistence in the voter model. Phys. Rev. E 53 (1996) 3078–3087.
  • [2] M. Bramson, J. T. Cox and D. Griffeath. Occupation time large deviations of the voter model. Probab. Theory Related Fields 77 (1988) 401–413.
  • [3] P. Clifford and A. Sudbury. A model for spatial conflict. Biometrika 60 (1973) 581–588.
  • [4] J. T. Cox. Some limit theorems for voter model occupation times. Ann. Probab. 16 (1988) 1559–1569.
  • [5] J. T. Cox and D. Griffeath. Occupation time limit theorems for the voter model. Ann. Probab. 11 (1983) 876–893.
  • [6] J. T. Cox and D. Griffeath. Diffusive clustering in the two dimensional voter model. Ann. Probab. 14 (1986) 347–370.
  • [7] I. Dornic and C. Godrèche. Large deviations and nontrivial exponents in coarsening systems. J. Phys. A 31 (1998) 5413–5429.
  • [8] R. Durrett. Lecture Notes on Particle Systems and Percolation. Belmont, Wadsworth, CA, 1988.
  • [9] R. Durrett. Probability: Theory and Examples, 3rd edition. Duxbury Press, Belmont, CA, 2005.
  • [10] F. den Hollander. Large Deviations. Fields Institute Monographs 14. Amer. Math. Soc., Providence, RI, 2000.
  • [11] R. A. Holley and T. M. Liggett. Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3 (1975) 643–663.
  • [12] M. Howard and C. Godrèche. Persistence in the voter model: Continuum reaction-diffusion approach. J. Phys. A 31 (1998) L209–L215.
  • [13] G. F. Lawler. Intersections of Random Walks. Birkhäuser, Boston, 1991.
  • [14] T. M. Liggett. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York, 1985.