Algebraic & Geometric Topology

Examples of nontrivial contact mapping classes for overtwisted contact manifolds in all dimensions

Fabio Gironella

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We construct (infinitely many) examples in all dimensions of contactomorphisms of closed overtwisted contact manifolds that are smoothly isotopic but not contact-isotopic to the identity.

Article information

Algebr. Geom. Topol., Volume 19, Number 3 (2019), 1207-1227.

Received: 18 May 2017
Revised: 1 September 2018
Accepted: 11 September 2018
First available in Project Euclid: 29 May 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53D10: Contact manifolds, general 57R17: Symplectic and contact topology

contact geometry contact topology contact mapping group contact mapping class nontrivial contact mapping classes


Gironella, Fabio. Examples of nontrivial contact mapping classes for overtwisted contact manifolds in all dimensions. Algebr. Geom. Topol. 19 (2019), no. 3, 1207--1227. doi:10.2140/agt.2019.19.1207.

Export citation


  • M A Aguilar, J L Cisneros-Molina, M E Frías-Armenta, Characteristic classes and transversality, Topology Appl. 154 (2007) 1220–1235
  • M F Atiyah, $K$–theory, 2nd edition, Addison-Wesley, Redwood City, CA (1989)
  • M S Borman, Y Eliashberg, E Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281–361
  • F Bourgeois, Odd dimensional tori are contact manifolds, Int. Math. Res. Not. 2002 (2002) 1571–1574
  • F Bourgeois, Contact homology and homotopy groups of the space of contact structures, Math. Res. Lett. 13 (2006) 71–85
  • J Bowden, D Crowley, A I Stipsicz, The topology of Stein fillable manifolds in high dimensions, I, Proc. Lond. Math. Soc. 109 (2014) 1363–1401
  • R Casals, E Murphy, F Presas, Geometric criteria for overtwistedness, preprint (2015) To appear in J. Amer. Math. Soc.
  • J Cerf, Sur les difféomorphismes de la sphère de dimension trois $(\Gamma \sb{\!4}=0)$, Lecture Notes in Mathematics 53, Springer (1968)
  • F Ding, H Geiges, The diffeotopy group of $S^1\times S^2$ via contact topology, Compos. Math. 146 (2010) 1096–1112
  • Y Eliashberg, Classification of overtwisted contact structures on $3$–manifolds, Invent. Math. 98 (1989) 623–637
  • Y Eliashberg, M Fraser, Topologically trivial Legendrian knots, J. Symplectic Geom. 7 (2009) 77–127
  • H Geiges, Constructions of contact manifolds, Math. Proc. Cambridge Philos. Soc. 121 (1997) 455–464
  • H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics 109, Cambridge Univ. Press (2008)
  • H Geiges, J Gonzalo Perez, On the topology of the space of contact structures on torus bundles, Bull. London Math. Soc. 36 (2004) 640–646
  • H Geiges, M Klukas, The fundamental group of the space of contact structures on the $3$–torus, Math. Res. Lett. 21 (2014) 1257–1262
  • F Gironella, Examples of non-trivial contact mapping classes for overtwisted contact manifolds in all dimensions, preprint (2017)
  • F Gironella, On some examples and constructions of contact manifolds, preprint (2017)
  • F Gironella, On some constructions of contact manifolds, Thèse de doctorat, Université Paris-Saclay (2018) \setbox0\makeatletter\@url {\unhbox0
  • E Giroux, Sur les transformations de contact au-dessus des surfaces, from “Essays on geometry and related topics, II” (E Ghys, P de la Harpe, V F R Jones, V Sergiescu, T Tsuboi, editors), Monogr. Enseign. Math. 38, Enseignement Math., Geneva (2001) 329–350
  • E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from “Proceedings of the International Congress of Mathematicians” (L Tatsien, editor), volume II, Higher Ed. Press, Beijing (2002) 405–414
  • E Giroux, P Massot, On the contact mapping class group of Legendrian circle bundles, Compos. Math. 153 (2017) 294–312
  • Y Huang, On plastikstufe, bordered Legendrian open book and overtwisted contact structures, J. Topol. 10 (2017) 720–743
  • S Lanzat, F Zapolsky, On the contact mapping class group of the contactization of the $A_m$–Milnor fiber, Ann. Math. Qué. 42 (2018) 79–94
  • S Lisi, A Marinković, K Niederkrüger, On properties of Bourgeois contact structures, preprint (2018)
  • A Marinković, M Pabiniak, On displaceability of pre-Lagrangian toric fibers in contact toric manifolds, Internat. J. Math. 27 (2016) art. id. 1650113
  • P Massot, Natural fibrations in contact topology, preprint (2015) \setbox0\makeatletter\@url {\unhbox0
  • P Massot, K Niederkrüger, Examples of non-trivial contact mapping classes in all dimensions, Int. Math. Res. Not. 2016 (2016) 4784–4806
  • P Massot, K Niederkrüger, C Wendl, Weak and strong fillability of higher dimensional contact manifolds, Invent. Math. 192 (2013) 287–373
  • A Mori, Reeb foliations on $S^5$ and contact $5$–manifolds violating the Thurston–Bennequin inequality, preprint (2015)
  • K Niederkrüger, F Presas, Some remarks on the size of tubular neighborhoods in contact topology and fillability, Geom. Topol. 14 (2010) 719–754
  • T Vogel, Non-loose unknots, overtwisted discs, and the contact mapping class group of $S^3$, Geom. Funct. Anal. 28 (2018) 228–288