Algebraic & Geometric Topology

Every orientable 3–manifold is a $\mathrm{B}\Gamma$

Danny Calegari

Full-text: Open access

Abstract

We show that every orientable 3–manifold is a classifying space BΓ where Γ is a groupoid of germs of homeomorphisms of . This follows by showing that every orientable 3–manifold M admits a codimension one foliation such that the holonomy cover of every leaf is contractible. The we construct can be taken to be C1 but not C2. The existence of such an answers positively a question posed by Tsuboi [Classifying spaces for groupoid structures, notes from minicourse at PUC, Rio de Janeiro (2001)], but leaves open the question of whether M= BΓ for some C groupoid Γ.

Article information

Source
Algebr. Geom. Topol., Volume 2, Number 1 (2002), 433-447.

Dates
Received: 25 March 2002
Accepted: 28 May 2002
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882701

Digital Object Identifier
doi:10.2140/agt.2002.2.433

Mathematical Reviews number (MathSciNet)
MR1917061

Zentralblatt MATH identifier
0991.57028

Subjects
Primary: 57R32: Classifying spaces for foliations; Gelfand-Fuks cohomology [See also 58H10]
Secondary: 58H05: Pseudogroups and differentiable groupoids [See also 22A22, 22E65]

Keywords
foliation classifying space groupoid germs of homeomorphisms

Citation

Calegari, Danny. Every orientable 3–manifold is a $\mathrm{B}\Gamma$. Algebr. Geom. Topol. 2 (2002), no. 1, 433--447. doi:10.2140/agt.2002.2.433. https://projecteuclid.org/euclid.agt/1513882701


Export citation

References

  • S. Boyer, D Rolfsen and B. Wiest, Orderable $3$–manifold groups, (preprint)
  • D. Calegari and N. Dunfield, Essential laminations and groups of homeomorphisms of the circle.
  • R. Edwards, Functional analysis. Theory and applications, Holt. Rinehart and Winston, New York–Toronto–London (1965)
  • A. Haefliger, Groupoïdes d'holonomie et classifiants, Transversal structure of foliations (Toulouse, 1982). Astérisque No. 116, (1984), 70–97
  • M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. No, 49 (1979), 5–233
  • N. Kopell, Commuting diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV Berkeley Calif, 1968) 165–184
  • W. Lickorish, A representation of orientable combinatorial $3$–manifolds, Ann. of Math. 76 (1962), 531–538
  • J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215–223
  • P. Molino, Riemannian foliations, Birkhauser progress in mathematics 73 (1988)
  • R. Myers, Open book decompositions of $3$–manifolds, Proc. Amer. Math. Soc. 72 (1978), no. 2, 397–402
  • D. Pixton, Nonsmoothable, unstable group actions, Trans. Amer. Math. Soc. 229 (1977), 259–268
  • R. Roberts, J. Shareshian and M. Stein, Infinitely many hyperbolic manifolds with no taut foliations, preprint
  • D. Rolfsen, Knots and Links, Publish or Perish Mathematics Lecture Series 7 (1976)
  • P. Schweitzer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math. (2) 100 (1974), 386–400
  • G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. no. 34 (1968), 105–112
  • F. Sergeaert, Feuilletages et difféomorphismes infiniment tangents à l'identité, Invent. Math. 39 (1977), 253–275
  • W. Thurston, A generalization of the Reeb stability theorem, Topology 13 (1974), 347–352
  • W. Thurston, The theory of foliations of codimension greater than one, Comment. Math. Helv. 49 (1974), 214–231
  • W. Thurston, Existence of codimension-one foliations, Ann. of Math. (2) 104 (1976), no. 2, 249–268
  • T. Tsuboi, Homology of diffeomorphism groups, and foliated structures, translated from the Japanese in Sugaku Expositions 3) (1990), no.2, 145–181
  • T. Tsuboi, Classifying spaces for groupoid structures, notes from minicourse at PUC, Rio de Janeiro (2001)