Algebraic & Geometric Topology

La filtration de Krull de la catégorie $\mathcal{U}$ et la cohomologie des espaces

Lionel Schwartz

Full-text: Open access

Abstract

This paper proves a particular case of a conjecture of N Kuhn. This conjecture is as follows. Consider the Gabriel–Krull filtration of the category U of unstable modules.

Let Un, for n0, be the nth step of this filtration. The category U is the smallest thick subcategory that contains all subcategories Un and is stable under colimit [L Schwartz, Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, Chicago Lectures in Mathematics Series (1994)]. The category U0 is the one of locally finite modules, that is, the modules that are direct limits of finite modules. The conjecture is as follows: Let X be a space, then either HXU0, or HXUn, for all n.

As an examples, the cohomology of a finite space, or of the loop space of a finite space are always locally finite. On the other side, the cohomology of the classifying space of a finite group whose order is divisible by 2 does belong to any subcategory Un. One proves this conjecture, modulo the additional hypothesis that all quotients of the nilpotent filtration are finitely generated. This condition is used when applying N Kuhn’s reduction of the problem. It is necessary to do it to be allowed to apply Lannes’ theorem on the cohomology of mapping spaces [N Kuhn, On topologically realizing modules over the Steenrod algebra, Ann. of Math. 141 (1995) 321-347].

Article information

Source
Algebr. Geom. Topol., Volume 1, Number 1 (2001), 519-548.

Dates
Received: 9 October 2000
Revised: 4 July 2001
Accepted: 30 September 2001
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882607

Digital Object Identifier
doi:10.2140/agt.2001.1.519

Mathematical Reviews number (MathSciNet)
MR1875606

Zentralblatt MATH identifier
1007.55014

Subjects
Primary: 55S10: Steenrod algebra
Secondary: 57S35

Keywords
Steenrod operations nilpotent modules Eilenberg–Moore spectral sequence

Citation

Schwartz, Lionel. La filtration de Krull de la catégorie $\mathcal{U}$ et la cohomologie des espaces. Algebr. Geom. Topol. 1 (2001), no. 1, 519--548. doi:10.2140/agt.2001.1.519. https://projecteuclid.org/euclid.agt/1513882607


Export citation

References

  • P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962) 323-348.
  • H. W. Henn, J. Lannes, L. Schwartz, The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects, Am. J. of Math. 115 (1993) 1053-1106.
  • N. Kuhn, On topologically realizing modules over the Steenrod algebra, Ann. of Math. 141 (1995) 321-347.
  • J. Lannes, L. Schwartz, A propos de conjectures de Serre et Sullivan, Invent. Math. 83 (1986) 153-169.
  • D. Rector, Steenrod operations in the Eilenberg-Moore spectral sequence, Comment. Math. Helvet. 45 (1970) 540-552.
  • L. Schwartz, La filtration nilpotente de la catégorie ${\cal U}$ et la cohomologie des espaces de lacets, Proceedings Louvain La Neuve 1 Springer LMN 1318 (1988) 208-218.
  • L. Schwartz, Unstable modules over the Steenrod algebra and Sullivan's fixed point set conjecture, Chicago Lectures in Mathematics Series (1994).
  • L. Schwartz, A propos de la conjecture de non-réalisation due à N. Kuhn Invent. Math. 134 (1998) 211-227.
  • L. Schwartz, Unstable modules, functors, and the mod-$2$ cohomology of spaces, Proceedings Eurocoference Bielefeld 1998.
  • L. Smith, On Kunneth theorem 1, Math. Zeit. 116 (1970) 94-140.
  • L. Smith, Lectures on the Eilenberg-Moore spectral sequence, Springer LNM 134.