Algebraic & Geometric Topology

Maximal Thurston–Bennequin number of two-bridge links

Lenhard Ng

Full-text: Open access

Abstract

We compute the maximal Thurston–Bennequin number for a Legendrian two-bridge knot or oriented two-bridge link in standard contact 3, by showing that the upper bound given by the Kauffman polynomial is sharp. As an application, we present a table of maximal Thurston–Bennequin numbers for prime knots with nine or fewer crossings.

Article information

Source
Algebr. Geom. Topol., Volume 1, Number 1 (2001), 427-434.

Dates
Received: 24 May 2001
Revised: 26 July 2001
Accepted: 27 July 2001
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882601

Digital Object Identifier
doi:10.2140/agt.2001.1.427

Mathematical Reviews number (MathSciNet)
MR1852765

Zentralblatt MATH identifier
1056.57010

Subjects
Primary: 53D12: Lagrangian submanifolds; Maslov index
Secondary: 57M15: Relations with graph theory [See also 05Cxx]

Keywords
Legendrian knot two-bridge Thurston–Bennequin number Kauffman polynomial

Citation

Ng, Lenhard. Maximal Thurston–Bennequin number of two-bridge links. Algebr. Geom. Topol. 1 (2001), no. 1, 427--434. doi:10.2140/agt.2001.1.427. https://projecteuclid.org/euclid.agt/1513882601


Export citation

References

  • D Bennequin, Entrelacements et équations de Pfaff, Astérisque 107–108 (1983) 87–161
  • G Burde, H Zieschang, Knots, Walter de Gruyter (1985)
  • J Epstein, On the invariants and isotopies of Legendrian and transverse knots, PhD thesis, U C Davis, 1997
  • J Etnyre, K Honda, Knots and contact geometry, preprint, 2000.
  • E Ferrand, On Legendrian knots and polynomial invariants, preprint, 2000.
  • D Fuchs, S Tabachnikov, Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997) 1025–1054
  • L Kauffman, On Knots, Princeton University Press (1987)
  • W B R Lickorish, Linear skein theory and link polynomials, Topology Appl. 27 (1987) 265–274
  • L Ng, Invariants of Legendrian links, PhD thesis, MIT, 2001, available at http://www-math.mit.edu/~lenny/
  • D Rolfsen, Knots and Links, Publish or Perish (1990)
  • L Rudolph, A congruence between link polynomials, Math. Proc. Camb. Phil. Soc. 107 (1990) 319–327
  • H Schubert, Knoten mit zwei Brücken, Math. Zeit. 65 (1956) 133–170
  • T Tanaka, Maximal Bennequin numbers and Kauffman polynomials of positive links, Proc. Amer. Math. Soc. 127 (1999) 3427–3432
  • N Yufa, Thurston-Bennequin invariant of Legendrian knots, senior thesis, MIT, 2001