Algebraic & Geometric Topology

An indecomposable $PD_3$–complex : II

Jonathan A Hillman

Full-text: Open access

Abstract

We show that there are two homotopy types of PD3–complexes with fundamental group S3Z2ZS3, and give explicit constructions for each, which differ only in the attachment of the top cell.

Article information

Source
Algebr. Geom. Topol., Volume 4, Number 2 (2004), 1103-1109.

Dates
Received: 4 August 2004
Accepted: 16 November 2004
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882544

Digital Object Identifier
doi:10.2140/agt.2004.4.1103

Mathematical Reviews number (MathSciNet)
MR2113897

Zentralblatt MATH identifier
1067.57015

Subjects
Primary: 57P10: Poincaré duality spaces
Secondary: 55M05: Duality

Keywords
indecomposable Poincaré duality $PD_3$–complex

Citation

Hillman, Jonathan A. An indecomposable $PD_3$–complex : II. Algebr. Geom. Topol. 4 (2004), no. 2, 1103--1109. doi:10.2140/agt.2004.4.1103. https://projecteuclid.org/euclid.agt/1513882544


Export citation

References

  • Handel, D. On products in the cohomology of the dihedral groups, Tôhoku Math. J. 45 (1993), 13-42.
  • Hillman, J.A. On 3-dimensional Poincaré duality complexes and 2-knot groups, Math. Proc. Cambridge Phil. Soc. 114 (1993), 215-218.
  • Hillman, J.A. An indecomposable $PD_3$-complex whose group has infinitely many ends, Math. Proc. Cambridge Phil. Soc., to appear (2005).
  • Swan, R.G. Periodic resolutions for finite groups. Ann. of Math. 72 (1960), 267-291.
  • Turaev, V.G. Three-dimensional Poincaré complexes: homotopy classification and splitting. Math. USSR-Sb. 67 (1990), 261-282. MR1015042 (91c:57031) Turaev, V. G. Three-dimensional Poincaré complexes: homotopy classification and splitting. (Russian) Mat. Sb. 180 (1989), no. 6, 809–830.
  • Wall, C.T.C. Poincaré complexes: I. Ann. of Math. 86 (1967), 213-245.
  • Wall, C.T.C. Poincaré duality in dimension 3, in Proceedings of the Casson Fest (Arkansas and Texas 2003) (edited by C.McA.Gordon and Y.Rieck), Geom. Topol. Monogr. 7 (2004), 1-26.