Algebraic & Geometric Topology

$L_\delta$ groups are almost convex and have a sub-cubic Dehn function

Murray Elder

Full-text: Open access


We prove that if the Cayley graph of a finitely generated group enjoys the property Lδ then the group is almost convex and has a sub-cubic isoperimetric function.

Article information

Algebr. Geom. Topol., Volume 4, Number 1 (2004), 23-29.

Received: 2 September 2003
Revised: 3 October 2003
Accepted: 19 December 2003
First available in Project Euclid: 21 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx]
Secondary: 20F67: Hyperbolic groups and nonpositively curved groups

almost convex isoperimetric function property $L_\delta$


Elder, Murray. $L_\delta$ groups are almost convex and have a sub-cubic Dehn function. Algebr. Geom. Topol. 4 (2004), no. 1, 23--29. doi:10.2140/agt.2004.4.23.

Export citation


  • B. H. Bowditch. A short proof that a subquadratic isoperimetric inequality implies a linear one. Michigan Math. J., 42(1):103–107, 1995.
  • N. Brady and M. R. Bridson. There is only one gap in the isoperimetric spectrum. Geom. Funct. Anal., 10(5):1053–1070, 2000.
  • Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature. Springer-Verlag, Berlin, 1999.
  • James W. Cannon. Almost convex groups. Geom. Dedicata, 22(2):197–210, 1987.
  • Indira Chatterji and Kim Ruane. Some geometric groups with rapid decay. Mathematics ArXiv no. math.GR/0310356.
  • David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston. Word processing in groups. Jones and Bartlett Publishers, Boston, MA, 1992.
  • S. M. Gersten. Introduction to hyperbolic and automatic groups. In Summer School in Group Theory in Banff, 1996, pages 45–70. Amer. Math. Soc., Providence, RI, 1999.
  • Walter D. Neumann and Michael Shapiro. A short course in geometric group theory. Notes for the ANU Workshop January/February 1996. Topology Atlas Document no. iaai-13.
  • A. Yu. Ol'shanskiĭ. Hyperbolicity of groups with subquadratic isoperimetric inequality. Internat. J. Algebra Comput., 1(3):281–289, 1991.
  • Carsten Thiel. Zur fast-Konvexität einiger nilpotenter Gruppen. Universität Bonn Mathematisches Institut, Bonn, 1992. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1991.