Algebraic & Geometric Topology

$L_\delta$ groups are almost convex and have a sub-cubic Dehn function

Murray Elder

Full-text: Open access

Abstract

We prove that if the Cayley graph of a finitely generated group enjoys the property Lδ then the group is almost convex and has a sub-cubic isoperimetric function.

Article information

Source
Algebr. Geom. Topol., Volume 4, Number 1 (2004), 23-29.

Dates
Received: 2 September 2003
Revised: 3 October 2003
Accepted: 19 December 2003
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882464

Digital Object Identifier
doi:10.2140/agt.2004.4.23

Mathematical Reviews number (MathSciNet)
MR2031910

Zentralblatt MATH identifier
1056.20030

Subjects
Primary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx]
Secondary: 20F67: Hyperbolic groups and nonpositively curved groups

Keywords
almost convex isoperimetric function property $L_\delta$

Citation

Elder, Murray. $L_\delta$ groups are almost convex and have a sub-cubic Dehn function. Algebr. Geom. Topol. 4 (2004), no. 1, 23--29. doi:10.2140/agt.2004.4.23. https://projecteuclid.org/euclid.agt/1513882464


Export citation

References

  • B. H. Bowditch. A short proof that a subquadratic isoperimetric inequality implies a linear one. Michigan Math. J., 42(1):103–107, 1995.
  • N. Brady and M. R. Bridson. There is only one gap in the isoperimetric spectrum. Geom. Funct. Anal., 10(5):1053–1070, 2000.
  • Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature. Springer-Verlag, Berlin, 1999.
  • James W. Cannon. Almost convex groups. Geom. Dedicata, 22(2):197–210, 1987.
  • Indira Chatterji and Kim Ruane. Some geometric groups with rapid decay. Mathematics ArXiv no. math.GR/0310356.
  • David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston. Word processing in groups. Jones and Bartlett Publishers, Boston, MA, 1992.
  • S. M. Gersten. Introduction to hyperbolic and automatic groups. In Summer School in Group Theory in Banff, 1996, pages 45–70. Amer. Math. Soc., Providence, RI, 1999.
  • Walter D. Neumann and Michael Shapiro. A short course in geometric group theory. Notes for the ANU Workshop January/February 1996. Topology Atlas Document no. iaai-13.
  • A. Yu. Ol'shanskiĭ. Hyperbolicity of groups with subquadratic isoperimetric inequality. Internat. J. Algebra Comput., 1(3):281–289, 1991.
  • Carsten Thiel. Zur fast-Konvexität einiger nilpotenter Gruppen. Universität Bonn Mathematisches Institut, Bonn, 1992. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1991.