Algebraic & Geometric Topology

Global structure of the mod two symmetric algebra, $H^*(BO;\mathbb{F}_{2})$, over the Steenrod algebra

David J Pengelley and Frank Williams

Full-text: Open access

Abstract

The algebra S of symmetric invariants over the field with two elements is an unstable algebra over the Steenrod algebra A, and is isomorphic to the mod two cohomology of BO, the classifying space for vector bundles. We provide a minimal presentation for S in the category of unstable A–algebras, ie, minimal generators and minimal relations.

From this we produce minimal presentations for various unstable A–algebras associated with the cohomology of related spaces, such as the BO(2m1) that classify finite dimensional vector bundles, and the connected covers of BO. The presentations then show that certain of these unstable A–algebras coalesce to produce the Dickson algebras of general linear group invariants, and we speculate about possible related topological realizability.

Our methods also produce a related simple minimal A–module presentation of the cohomology of infinite dimensional real projective space, with filtered quotients the unstable modules 2p1AA¯p2, as described in an independent appendix.

Article information

Source
Algebr. Geom. Topol., Volume 3, Number 2 (2003), 1119-1138.

Dates
Received: 24 October 2003
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882431

Digital Object Identifier
doi:10.2140/agt.2003.3.1119

Mathematical Reviews number (MathSciNet)
MR2012968

Zentralblatt MATH identifier
1057.55004

Subjects
Primary: 55R45: Homology and homotopy of $B$O and $B$U; Bott periodicity
Secondary: 13A50: Actions of groups on commutative rings; invariant theory [See also 14L24] 16W22: Actions of groups and semigroups; invariant theory 16W50: Graded rings and modules 55R40: Homology of classifying spaces, characteristic classes [See also 57Txx, 57R20] 55S05: Primary cohomology operations 55S10: Steenrod algebra

Keywords
symmetric algebra Steenrod algebra unstable algebra classifying space Dickson algebra $BO$ real projective space.

Citation

Pengelley, David J; Williams, Frank. Global structure of the mod two symmetric algebra, $H^*(BO;\mathbb{F}_{2})$, over the Steenrod algebra. Algebr. Geom. Topol. 3 (2003), no. 2, 1119--1138. doi:10.2140/agt.2003.3.1119. https://projecteuclid.org/euclid.agt/1513882431


Export citation

References

  • A.K. Bousfield, D.M. Davis, On the unstable Adams spectral sequence for $SO$ and $U$, and splittings of unstable $Ext$ groups, Boletin de la Sociedad Matematica Mexicana (2) 37(1992), 41–53.
  • D. Davis, Some quotients of the Steenrod algebra, Proc. Amer. Math. Soc. 83 (1981), 616–618.
  • S. Kochman, An algebraic filtration of $H_{\ast}BO$, in proc., Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemporary Math. 19 (1983), Amer. Math. Soc., 115–143.
  • J. Lannes, S. Zarati, Foncteurs dérivés de la déstabilisation, Math. Zeit. 194 (1987), 25–59.
  • K. Lesh, A conjecture on the unstable Adams spectral sequences for $SO$ and $U$, Fundamenta Mathematicae 174 (2002), 49–78.
  • Mathematical Reviews #93k:55022, American Mathematical Society, 1993.
  • W. Massey, The mod 2 cohomology of certain Postnikov systems, unpublished handwritten manuscript (1978), 20 pages, courtesy of Haynes Miller.
  • J. Milnor, J. Stasheff, Characteristic Classes, Annals of Mathematics Studies 76, Princeton Univ. Press, Princeton, NJ, 1974.
  • D. Pengelley, F. Peterson, F. Williams, A global structure theorem for the mod $2$ Dickson algebras, and unstable cyclic modules over the Steenrod and Kudo-Araki-May algebras, Math. Proc. Camb. Phil. Soc. 129 (2000), 263–275.
  • D. Pengelley, F. Williams, Sheared algebra maps and operation bialgebras for mod 2 homology and cohomology, Transactions of the American Mathematical Society 352 (2000), 1453–1492.
  • N.E. Steenrod, D.B.A. Epstein, Cohomology Operations, Princeton Univ. Press, 1962. \beginsloppypar
  • R. Stong, Determination of $H^{\ast}(BO(k,\ldots,\infty ),Z_{2})$ and $H^{\ast}(BU(k,\ldots,\infty),Z_{2})$, Trans. Amer. Math. Soc. 107 (1963), 526–544. \endsloppypar
  • C. Wilkerson, A primer on the Dickson invariants, in proc., Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemporary Math. 19 (1983), Amer. Math. Soc., 421–434, as corrected at the Hopf Topology Archive, http://hopf.math.purdue.edu/pub/hopf.html.
  • W. Wu, Les i-carrés dans une variété grassmannienne, C.R. Acad. Sci. Paris 230 (1950), 918–920.