Algebraic & Geometric Topology

What is a virtual link?

Greg Kuperberg

Full-text: Open access

Abstract

Several authors have recently studied virtual knots and links because they admit invariants arising from R–matrices. We prove that every virtual link is uniquely represented by a link LS×I in a thickened, compact, oriented surface S such that the link complement (S×I)L has no essential vertical cylinder.

Article information

Source
Algebr. Geom. Topol., Volume 3, Number 1 (2003), 587-591.

Dates
Received: 18 August 2002
Revised: 15 June 2003
Accepted: 23 October 2002
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882385

Digital Object Identifier
doi:10.2140/agt.2003.3.587

Mathematical Reviews number (MathSciNet)
MR1997331

Zentralblatt MATH identifier
1031.57010

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 57M27 57M15

Keywords
virtual link tetravalent graph stable equivalence

Citation

Kuperberg, Greg. What is a virtual link?. Algebr. Geom. Topol. 3 (2003), no. 1, 587--591. doi:10.2140/agt.2003.3.587. https://projecteuclid.org/euclid.agt/1513882385


Export citation

References

  • J. Scott Carter, Seiichi Kamada, and Masahico Saito, Stable equivalence of knots on surfaces and virtual knot cobordisms, J. Knot Theory Ramifications 11 (2002), no. 3, 311–322, \tt arXiv:math.GT/0008118.
  • Roger Fenn, Colin Rourke, and Brian Sanderson, The rack space, \tt arXiv:math.GT/0304228.
  • William H. Jaco and Peter B. Shalen, Seifert-fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192.
  • Klaus Johannson, Homotopy equivalences of $3$-manifolds with boundaries, Springer, Berlin, 1979.
  • Louis H. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663–690, \tt arXiv:math.GT/9811028.
  • Greg Kuperberg, Involutory Hopf algebras and 3-manifold invariants, Internat. J. Math. 2 (1991), no. 1, 41–66, \tt arXiv:math.QA/9201301.
  • J. Milnor, A unique decomposition theorem for $3$-manifolds, Amer. J. Math. 84 (1962), 1–7.
  • Horst Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949), no. 3, 57–104.